Pipeng Toolbox : Pipe Flow Rate Calculators Blank User
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Demo

Pipeline Flow Rate

Calculate fluid flow rate for single phase liquids, single phase gases, and two phase fluids.

Fluid flow rate can be measured by volume flow rate, mass flow rate, mole flow rate, and velocity.

    Related Modules :

    [FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
    [PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
    Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

    Links : ±
    CALCULATOR : Single Phase Liquid Pipeline Pressure Loss From Moody Diagram [FREE]   ±

    Calculate liquid pipeline outlet pressure from flow rate and diameter using the Moody diagram.

    The Moody diagram combines the Hagen-Poiseuille laminar flow equation with the Colebrook White turbulent flow equation (either the original Colebrook White equation or the modified Colebrook White equation).

    Tool Input

    • schdtype : Pipe Schedule Type
    • diamtype : Pipe Diameter Type
      • ODu : User Defined Outside Diameter
      • IDu : User Defined Inside Diameter
    • wtntype : Wall Thickness Type
      • tnu : User Defined Wall Thickness
    • visctype : Viscosity Type
      • μu : User Defined Dynamic Viscosity
      • νu : User Defined Kinematic Viscosity
    • voltype : Fluid Flow Rate Type
      • Qu : User Defined Volume Flow Rate
      • Mu : User Defined Mass Flow Rate
      • Vu : User Defined Fluid Velocity
      • Reu : User Defined Reynolds Number
    • rfactype : Pipe Internal Roughness Type
      • ru : User Defined Surface Roughness
      • rru : User Defined Relative Roughness
    • fdtype : Darcy Friction Factor Type
      • fdu : User Defined Darcy Friction Factor
    • ρ : Fluid Density
    • L : Pipe Length
    • K : Minor Loss K Factor
    • zi : Inlet Elevation Relative To Datum
    • zo : Outlet Elevation Relative To Datum
    • Pi : Inlet Pressure

    Tool Output

    • ΔP : Friction Pressure Loss
    • μ : Dynamic Viscosity
    • ID : Inside Diameter
    • M : Mass Flowrate
    • Po : Outlet Pressure
    • Q : Volume Flowrate
    • Re : Reynolds Number
    • V : Fluid Velocity
    • cvg : Convergence Factor (≅ 1)
    • fd : Darcy Friction Factor
    • ff : Fanning Friction Factor
    • rr : Surface Roughness Ratio
    • td : Darcy Transmission Factor
    • tf : Fanning Transmission Factor

    CALCULATOR : Single Phase Liquid Rectangular Duct Pressure Loss From Moody Diagram [FREE]   ±

    Calculate liquid rectangular duct volume flow rate from outlet pressure and hydraulic diameter using the Moody diagram.

    The Moody diagram combines the Hagen-Poiseuille laminar flow equation with the Colebrook White turbulent flow equation (either the original Colebrook White equation or the modified Colebrook White equation). The hydraulic diameter is equal to four times the cross section area divided by the perimeter.

    Tool Input

    • visctype : Viscosity Type
      • μu : User Defined Dynamic Viscosity
      • νu : User Defined Kinematic Viscosity
    • voltype : Fluid Flow Rate Type
      • Qu : User Defined Volume Flow Rate
      • Mu : User Defined Mass Flow Rate
      • Vu : User Defined Fluid Velocity
      • Reu : User Defined Reynolds Number
    • rfactype : Duct Internal Roughness Type
      • ru : User Defined Surface Roughness
      • rru : User Defined Relative Roughness
    • fdtype : Darcy Friction Factor Type
      • fdu : User Defined Darcy Friction Factor
    • ρ : Fluid Density
    • W : Duct Width
    • H : Duct Height
    • L : Duct Length
    • K : Minor Loss K Factor
    • zi : Inlet Elevation Relative To Datum
    • zo : Outlet Elevation Relative To Datum
    • Pi : Inlet Pressure

    Tool Output

    • ΔP : Friction Pressure Loss
    • μ : Dynamic Viscosity
    • ID : Duct Hydraulic Diameter
    • M : Mass Flowrate
    • Po : Outlet Pressure
    • Q : Volume Flowrate
    • Re : Reynolds Number
    • V : Fluid Velocity
    • cvg : Convergence Factor (≅ 1)
    • fd : Darcy Friction Factor
    • ff : Fanning Friction Factor
    • rr : Surface Roughness Ratio
    • td : Darcy Transmission Factor
    • tf : Fanning Transmission Factor

    CALCULATOR : Single Phase Liquid Pipeline Pressure Loss From Prandtl Nikuradse Blasius Colebrook Miller Konakov And Von Karman Equation [FREE]   ±

    Calculate liquid pipeline outlet pressure from flow rate and diameter.

    The Darcy-Weisbach friction factor may be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation, the modified Colebrook White equation, the Prandtl Nikuradse smooth pipe equation, the Blasius smooth pipe equation, the Colebrook smooth pipe equation, the Miller smooth pipe equation, the Konakov smooth pipe equation, the Von Karman rough pipe equation, or user defined.

    Tool Input

    • schdtype : Pipe Schedule Type
    • diamtype : Pipe Diameter Type
      • ODu : User Defined Outside Diameter
      • IDu : User Defined Inside Diameter
    • wtntype : Wall Thickness Type
      • tnu : User Defined Wall Thickness
    • visctype : Viscosity Type
      • μu : User Defined Dynamic Viscosity
      • νu : User Defined Kinematic Viscosity
    • voltype : Fluid Flow Rate Type
      • Qu : User Defined Volume Flow Rate
      • Mu : User Defined Mass Flow Rate
      • Vu : User Defined Fluid Velocity
      • Reu : User Defined Reynolds Number
    • rfactype : Pipe Internal Roughness Type
      • ru : User Defined Surface Roughness
      • rru : User Defined Relative Roughness
    • fdtype : Darcy Friction Factor Type
      • fdu : User Defined Darcy Friction Factor
    • ρ : Fluid Density
    • L : Pipe Length
    • K : Minor Loss K Factor
    • zi : Inlet Elevation Relative To Datum
    • zo : Outlet Elevation Relative To Datum
    • Pi : Inlet Pressure

    Tool Output

    • ΔP : Friction Pressure Loss
    • μ : Dynamic Viscosity
    • ID : Inside Diameter
    • M : Mass Flowrate
    • Po : Outlet Pressure
    • Q : Volume Flowrate
    • Re : Reynolds Number
    • V : Fluid Velocity
    • cvg : Convergence Factor (≅ 1)
    • fd : Darcy Friction Factor
    • ff : Fanning Friction Factor
    • rr : Surface Roughness Ratio
    • td : Darcy Transmission Factor
    • tf : Fanning Transmission Factor

    CALCULATOR : Water Pipeline Pressure Loss From Hazen Williams Equation [FREE]   ±

    Calculate water pipeline outlet pressure from flow rate and diameter using the Hazen-Williams equation.

    The Hazen Williams equation was developed for water pipelines. The Hazen Williams roughness coefficient C can either use predefined values, or user defined.

    Tool Input

    • schdtype : Pipe Schedule Type
    • diamtype : Pipe Diameter Type
      • ODu : User Defined Outside Diameter
      • IDu : User Defined Inside Diameter
    • wtntype : Wall Thickness Type
      • tnu : User Defined Wall Thickness
    • voltype : Fluid Flow Rate Type
      • Qu : User Defined Volume Flow Rate
      • Mu : User Defined Mass Flow Rate
      • Vu : User Defined Fluid Velocity
    • cfactype : Pipe Internal Roughness Type
      • Cu : User Defined Pipe Internal Roughness Factor
    • ρ : Fluid Density
    • L : Pipe Length
    • zi : Inlet Elevation Relative To Datum
    • zo : Outlet Elevation Relative To Datum
    • Pi : Inlet Pressure

    Tool Output

    • ΔP : Friction Pressure Loss
    • C : Hazen Williams Roughness Factor
    • ID : Inside Diameter
    • M : Mass Flowrate
    • Po : Outlet Pressure
    • Q : Volume Flowrate
    • V : Fluid Velocity
    • fd : Equivalent Darcy Friction Factor
    • r : Hydraulic Radius
    • s : Hydraulic Grade Line Slope (ΔH/L)

    CALCULATOR : Rectangular Water Channel Flowrate From Manning Equation [FREE]   ±

    Calculate the flowrate in an open rectangular water channel from the slope and cross section area using the Manning equation.

    The Manning roughness coefficient n accounts for friction losses. The hydraulic radius is equal to the cross section area divided by the wetted perimeter (w h/(w + 2h) for a rectangular channel). Use the goal seek option to calculate either the hydraulic slope or the water height from flowrate.

    Tool Input

    • nfactype : Channel Roughness Type
      • nu : User Defined Channel Roughness Factor
    • stype : Channel Slope Type
      • su : User Defined Channel Slope
      • gu : User Defined 50
      • Δzu : User Defined Delta Elevation
    • ρ : Fluid Density
    • W : Channel Width
    • H : Channel Liquid Height
    • L : Channel Length

    Tool Output

    • Δz : Delta Elevation
    • M : Mass Flowrate
    • Q : Volume Flowrate
    • V : Fluid Velocity
    • g : Channel Gradient
    • n : Manning Roughness Factor
    • r : Hydraulic Radius
    • s : Channel Slope (Δz/L)

    CALCULATOR : Water Pipeline Pressure Loss From Moody Diagram [FREE]   ±

    Calculate water pipeline outlet pressure from volume flow rate and diameter using the Moody diagram.

    The Darcy-Weisbach friction factor may be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation, the modified Colebrook White equation, or may be user defined. The water properties can be set for fresh water or salt water.

    Tool Input

    • schdtype : Pipe Schedule Type
    • diamtype : Pipe Diameter Type
      • ODu : User Defined Outside Diameter
      • IDu : User Defined Inside Diameter
    • wtntype : Wall Thickness Type
      • tnu : User Defined Wall Thickness
    • wtype : Water Type
    • voltype : Fluid Flow Rate Type
      • Qu : User Defined Volume Flow Rate
      • Mu : User Defined Mass Flow Rate
      • Vu : User Defined Fluid Velocity
      • Reu : User Defined Reynolds Number
    • rfactype : Pipe Internal Roughness Type
      • ru : User Defined Surface Roughness
      • rru : User Defined Relative Roughness
    • fdtype : Darcy Friction Factor Type
      • fdu : User Defined Darcy Friction Factor
    • L : Pipe Length
    • K : Minor Loss K Factor
    • zi : Inlet Elevation Relative To Datum
    • zo : Outlet Elevation Relative To Datum
    • Pi : Inlet Pressure

    Tool Output

    • ΔP : Friction Pressure Loss
    • μ : Water Dynamic Viscosity
    • ρ : Water Density
    • ID : Inside Diameter
    • M : Mass Flowrate
    • Po : Outlet Pressure
    • Q : Volume Flowrate
    • Re : Reynolds Number
    • V : Fluid Velocity
    • cvg : Convergence Factor (≅ 1)
    • fd : Darcy Friction Factor
    • ff : Fanning Friction Factor
    • rr : Surface Roughness Ratio
    • td : Darcy Transmission Factor
    • tf : Fanning Transmission Factor

    CALCULATOR : Single Phase Liquid Pipeline Pressure Loss From AGA Equation [FREE]   ±

    Calculate liquid pipeline outlet pressure from volume flow rate and diameter using the AGA equation.

    The AGA equation was developed for hydrocarbon pipelines. Minor losses are calculated from the pipe bend index (bend degrees per mile).

    Tool Input

    • schdtype : Pipe Schedule Type
    • diamtype : Pipe Diameter Type
      • ODu : User Defined Outside Diameter
      • IDu : User Defined Inside Diameter
    • wtntype : Wall Thickness Type
      • tnu : User Defined Wall Thickness
    • visctype : Viscosity Type
      • μu : User Defined Dynamic Viscosity
      • νu : User Defined Kinematic Viscosity
    • voltype : Fluid Flow Rate Type
      • Qu : User Defined Volume Flow Rate
      • Mu : User Defined Mass Flow Rate
      • Vu : User Defined Fluid Velocity
      • Reu : User Defined Reynolds Number
    • rfactype : Pipe Internal Roughness Type
    • dfactype : AGA Drag Factor Type
      • θu : User Defined Total Bend Angle
      • BIu : User Defined Bend Index
      • Dfu : User Defined Pipe Drag Factor
    • fdtype : Darcy Friction Factor Type
      • fdu : User Defined Darcy Friction Factor
    • ρ : Fluid Density
    • L : Pipe Length
    • zi : Inlet Elevation Relative To Datum
    • zo : Outlet Elevation Relative To Datum
    • Pi : Inlet Pressure

    Tool Output

    • ΔP : Friction Pressure Loss
    • μ : Dynamic Viscosity
    • Df : AGA Pipe Drag Factor
    • ID : Inside Diameter
    • M : Mass Flowrate
    • Po : Outlet Pressure
    • Q : Volume Flowrate
    • Re : Reynolds Number
    • V : Fluid Velocity
    • cvg : Convergence Factor (≅ 1)
    • fd : Darcy Friction Factor
    • ff : Fanning Friction Factor
    • rr : Surface Roughness Ratio
    • td : Darcy Transmission Factor
    • tf : Fanning Transmission Factor

    CALCULATOR : Single Phase Gas Pipeline Pressure Loss From Moody Diagram [PLUS]   ±

    Calculate gas pipeline outlet pressure from flow rate and diameter using the Moody diagram.

    The Moody diagram combines the Hagen-Poiseuille laminar flow equation with the Colebrook White turbulent flow equation (either the original Colebrook White equation or the modified Colebrook White equation). Bends, valves, tees and other pipe fittings should be accounted for using the minor loss K factor.

    Tool Input

    • schdtype : Pipe Schedule Type
    • diamtype : Pipe Diameter Type
      • ODu : User Defined Outside Diameter
      • IDu : User Defined Inside Diameter
    • wtntype : Wall Thickness Type
      • tnu : User Defined Wall Thickness
    • fluidtype : Fluid Property Type
      • SGu : User Defined Gas Specific Gravity
      • μu : User Defined Dynamic Viscosity
    • voltype : Fluid Flow Rate Type
      • Qfu : User Defined Gas Volume Flow Rate
      • Mfu : User Defined Gas Mass Flow Rate
      • Ngu : User Defined Gas Mole Flow Rate
      • Vfu : User Defined Gas Velocity
      • Reu : User Defined Reynolds Number
    • rfactype : Pipe Internal Roughness Type
      • ru : User Defined Surface Roughness
      • rru : User Defined Relative Roughness
    • fdtype : Darcy Friction Factor Type
      • fdu : User Defined Darcy Friction Factor
    • flowtype : Pressure For Fluid Property Calculation
    • L : Pipe Length
    • K : K Factor
    • zi : Inlet Elevation Relative To Datum
    • zo : Outlet Elevation Relative To Datum
    • Pi : Inlet Pressure
    • T : Fluid Temperature
    • Z : Compressibility Factor

    Tool Output

    • ΔP : Friction Pressure Loss
    • μ : Dynamic Viscosity
    • ρ : Fluid Density (At Pf)
    • ID : Inside Diameter
    • Mf : Mass Flowrate
    • Ng : Mole Flow Rate
    • Pa : Average Fluid Pressure
    • Pf : Pressure For Fluid Property Calculation
    • Po : Outlet Pressure
    • Qf : Volume Flowrate (At Pf)
    • Re : Reynolds Number (At Inlet)
    • SG : Gas Specific Gravity
    • Vf : Fluid Velocity (At Pf)
    • cvg : Convergence Factor (≅ 1)
    • es : Elevation Constant
    • fd : Darcy Friction Factor
    • ff : Fanning Friction Factor
    • ls : Length Constant
    • rr : Surface Roughness Ratio
    • ss : Elevation Exponent
    • td : Darcy Transmission Factor
    • tf : Fanning Transmission Factor
    • vg : Mole Specific Volume (At Pf)

    CALCULATOR : Single Phase Gas Rectangular Duct Pressure Loss From Moody Diagram [PLUS]   ±

    Calculate gas rectangular duct outlet pressure from flow rate and hydraulic diameter using the Moody diagram.

    The Darcy-Weisbach friction factor can be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation, the modified Colebrook White equation, or can be user defined. The hydraulic diameter is equal to four times the cross section area divided by the perimeter. Bends, valves, tees and other pipe fittings should be accounted for using the minor loss K factor.

    Tool Input

    • fluidtype : Fluid Property Type
      • SGu : User Defined Gas Specific Gravity
      • μu : User Defined Dynamic Viscosity
    • voltype : Fluid Flow Rate Type
      • Qfu : User Defined Gas Volume Flow Rate
      • Mfu : User Defined Gas Mass Flow Rate
      • Ngu : User Defined Gas Mole Flow Rate
      • Vfu : User Defined Gas Velocity
      • Reu : User Defined Reynolds Number
    • rfactype : Pipe Internal Roughness Type
      • ru : User Defined Surface Roughness
      • rru : User Defined Relative Roughness
    • fdtype : Darcy Friction Factor Type
      • fdu : User Defined Darcy Friction Factor
    • flowtype : Pressure For Fluid Property Calculation
    • W : Duct Width
    • H : Duct Height
    • L : Pipe Length
    • K : K Factor
    • zi : Inlet Elevation Relative To Datum
    • zo : Outlet Elevation Relative To Datum
    • Pi : Inlet Pressure
    • T : Fluid Temperature
    • Z : Compressibility Factor

    Tool Output

    • ΔP : Friction Pressure Loss
    • μ : Dynamic Viscosity
    • ρ : Fluid Density (At Pf)
    • ID : Hydraulic Diameter
    • Mf : Mass Flowrate
    • Ng : Mole Flow Rate
    • Pa : Average Fluid Pressure
    • Pf : Pressure For Fluid Property Calculation
    • Po : Outlet Pressure
    • Qf : Volume Flowrate (At Pf)
    • Re : Reynolds Number (At Inlet)
    • SG : Gas Specific Gravity
    • Vf : Fluid Velocity (At Pf)
    • cvg : Convergence Factor (≅ 1)
    • es : Elevation Constant
    • fd : Darcy Friction Factor
    • ff : Fanning Friction Factor
    • ls : Length Constant
    • rr : Surface Roughness Ratio
    • ss : Elevation Exponent
    • td : Darcy Transmission Factor
    • tf : Fanning Transmission Factor
    • vg : Mole Specific Volume (At Pf)

    CALCULATOR : Single Phase Gas Pipeline Pressure Loss From Prandtl Nikuradse Blasius Colebrook Miller Konakov And Von Karman Equation [PLUS]   ±

    Calculate general gas pipeline outlet pressure from flow rate and diameter.

    The pressure loss can be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation, the modified Colebrook White equation, the Prandtl Nikuradse smooth pipe equation, the Blasius smooth pipe equation, the Colebrook smooth pipe equation, the Miller smooth pipe equation, the Konakov smooth pipe equation, the Von Karman rough pipe equation, or user defined friction factor. Bends, valves, tees and other pipe fittings should be accounted for using the minor loss K factor.

    Tool Input

    • schdtype : Pipe Schedule Type
    • diamtype : Pipe Diameter Type
      • ODu : User Defined Outside Diameter
      • IDu : User Defined Inside Diameter
    • wtntype : Wall Thickness Type
      • tnu : User Defined Wall Thickness
    • fluidtype : Fluid Property Type
      • SGu : User Defined Gas Specific Gravity
      • μu : User Defined Dynamic Viscosity
    • voltype : Fluid Flow Rate Type
      • Qfu : User Defined Gas Volume Flow Rate
      • Mfu : User Defined Gas Mass Flow Rate
      • Ngu : User Defined Gas Mole Flow Rate
      • Vfu : User Defined Gas Velocity
      • Reu : User Defined Reynolds Number
    • rfactype : Pipe Internal Roughness Type
      • ru : User Defined Surface Roughness
      • rru : User Defined Relative Roughness
    • fdtype : Darcy Friction Factor Type
      • fdu : User Defined Darcy Friction Factor
    • flowtype : Pressure For Fluid Property Calculation
    • L : Pipe Length
    • K : K Factor
    • zi : Inlet Elevation Relative To Datum
    • zo : Outlet Elevation Relative To Datum
    • Pi : Inlet Pressure
    • T : Fluid Temperature
    • Z : Compressibility Factor

    Tool Output

    • ΔP : Friction Pressure Loss
    • μ : Dynamic Viscosity
    • ρ : Fluid Density (At Pf)
    • ID : Inside Diameter
    • Mf : Mass Flowrate
    • Ng : Mole Flow Rate
    • Pa : Average Fluid Pressure
    • Pf : Pressure For Fluid Property Calculation
    • Po : Outlet Pressure
    • Qf : Volume Flowrate (At Pf)
    • Re : Reynolds Number (At Inlet)
    • SG : Gas Specific Gravity
    • Vf : Fluid Velocity (At Pf)
    • cvg : Convergence Factor (≅ 1)
    • es : Elevation Constant
    • fd : Darcy Friction Factor
    • ff : Fanning Friction Factor
    • ls : Length Constant
    • rr : Surface Roughness Ratio
    • ss : Elevation Exponent
    • td : Darcy Transmission Factor
    • tf : Fanning Transmission Factor
    • vg : Mole Specific Volume (At Pf)

    CALCULATOR : Single Phase Gas Pipeline Pressure Loss From Weymouth Panhandle A And Panhandle B Equation [PLUS]   ±

    Calculate gas pipeline outlet pressure from flow rate and diameter using either the Weymouth equation, the Panhandle A, the Panhandle B equation, or the general equation with user defined friction factor.

    For the Weymouth equation, the Panhandle A, the Panhandle B equation the pipe roughness is accounted for by the efficiency factor. The equivalent Darcy friction factor includes the effect of the efficiency factor. Valves, tees and other pipe fittings should be accounted for by adding a minor loss equivalent length to the pipeline length.

    Tool Input

    • schdtype : Pipe Schedule Type
    • diamtype : Pipe Diameter Type
      • ODu : User Defined Outside Diameter
      • IDu : User Defined Inside Diameter
    • wtntype : Wall Thickness Type
      • tnu : User Defined Wall Thickness
    • fluidtype : Fluid Property Type
      • SGu : User Defined Gas Specific Gravity
    • voltype : Fluid Flow Rate Type
      • Qfu : User Defined Gas Volume Flow Rate
      • Mfu : User Defined Gas Mass Flow Rate
      • Ngu : User Defined Gas Mole Flow Rate
      • Vfu : User Defined Gas Velocity
    • efactype : Efficiency Factor Type
      • Eu : User Defined Efficiency Factor
    • fdtype : Darcy Friction Factor Type
      • fdu : User Defined Darcy Friction Factor
    • flowtype : Fluid Pressure Type
    • L : Pipe Length
    • zi : Inlet Elevation Relative To Datum
    • zo : Outlet Elevation Relative To Datum
    • Pi : Inlet Pressure
    • T : Fluid Temperature
    • Z : Compressibility Factor

    Tool Output

    • ΔP : Friction Pressure Loss
    • ρ : Fluid Density (At Pf)
    • E : Efficiency Factor
    • ID : Inside Diameter
    • Mf : Mass Flowrate
    • Ng : Mole Flow Rate
    • Pa : Average Fluid Pressure
    • Pf : Pressure For Fluid Property Calculation
    • Po : Outlet Pressure
    • Qf : Volume Flowrate (At Pf)
    • SG : Gas Specific Gravity
    • Vf : Fluid Velocity (At Pf)
    • es : Elevation Constant
    • fd : Darcy Friction Factor
    • ff : Fanning Friction Factor
    • ls : Length Constant
    • ss : Elevation Exponent
    • td : Darcy Transmission Factor
    • tf : Fanning Transmission Factor
    • vg : Mole Specific Volume (At Pf)

    CALCULATOR : Single Phase Gas Pipeline Pressure Loss From AGA Equation [PLUS]   ±

    Calculate AGA equation pipeline outlet pressure from flow rate and diameter.

    The AGA equation was developed for hydrocarbon pipelines. Minor losses are accounted for using the pipe bend index (bend degrees per mile). The equivalent Darcy friction factor includes the effect of the bend index. Valves, tees and other pipe fittings should be accounted for either by using the minor loss K factor, or by adding a minor loss equivalent length to the pipeline length.

    Tool Input

    • schdtype : Pipe Schedule Type
    • diamtype : Pipe Diameter Type
      • ODu : User Defined Outside Diameter
      • IDu : User Defined Inside Diameter
    • wtntype : Wall Thickness Type
      • tnu : User Defined Wall Thickness
    • fluidtype : Fluid Property Type
      • SGu : User Defined Gas Specific Gravity
      • μu : User Defined Dynamic Viscosity
    • voltype : Fluid Flow Rate Type
      • Qfu : User Defined Gas Volume Flow Rate
      • Mfu : User Defined Gas Mass Flow Rate
      • Ngu : User Defined Gas Mole Flow Rate
      • Vfu : User Defined Gas Velocity
      • Reu : User Defined Reynolds Number
    • rfactype : Pipe Internal Roughness Type
    • dfactype : AGA Drag Factor Type
      • θu : User Defined Total Bend Angle
      • BIu : User Defined Bend Index
      • Dfu : User Defined Pipe Drag Factor
    • ktype : K Factor Type
      • Ku : User Defined K Factor
    • fdtype : Darcy Friction Factor Type
      • fdu : User Defined Darcy Friction Factor
    • flowtype : Pressure For Fluid Property Calculation
    • L : Pipe Length
    • zi : Inlet Elevation Relative To Datum
    • zo : Outlet Elevation Relative To Datum
    • Pi : Inlet Pressure
    • T : Fluid Temperature
    • Z : Compressibility Factor

    Tool Output

    • ΔP : Friction Pressure Loss
    • μ : Dynamic Viscosity
    • ρ : Fluid Density (At Pf)
    • Df : AGA Pipe Drag Factor
    • ID : Inside Diameter
    • K : K Factor
    • Mf : Mass Flowrate
    • Ng : Mole Flow Rate
    • Pa : Average Fluid Pressure
    • Pf : Pressure For Fluid Property Calculation
    • Po : Outlet Pressure
    • Qf : Volume Flowrate (At Pf)
    • Re : Reynolds Number (At Inlet)
    • SG : Gas Specific Gravity
    • Vf : Fluid Velocity (At Pf)
    • cvg : Convergence Factor (≅ 1)
    • es : Elevation Constant
    • fd : Darcy Friction Factor
    • ff : Fanning Friction Factor
    • ls : Length Constant
    • rr : Surface Roughness Ratio
    • ss : Elevation Exponent
    • td : Darcy Transmission Factor
    • tf : Fanning Transmission Factor
    • vg : Mole Specific Volume (At Pf)

    CALCULATOR : Multi Phase Pipeline Fluid Mass Volume And Gas Moles [PLUS]   ±

    Calculate pipeline volume, fluid mass and fluid gas moles.

    Tool Input

    • schdtype : Pipe Schedule Type
    • diamtype : Pipe Diameter Type
      • ODu : User Defined Outside Diameter
      • IDu : User Defined Inside Diameter
    • wtntype : Wall Thickness Type
      • tnu : User Defined Wall Thickness
    • mvtype : Fluid Density Type
      • GORu : User Defined Gas Oil Ratio
      • WCu : User Defined Water Cut
      • ρu : User Defined Fluid Density
    • voltype : Fluid Volume Type
      • Vou : User Defined Oil Volume
      • Vlu : User Defined Liquid Volume
      • Ngu : User Defined Gas Moles
      • Vfu : User Defined Total Fluid Volume
      • Mfu : User Defined Total Fluid Mass
      • Lu : User Defined Pipeline Length
    • ρo : Oil Density
    • ρw : Water Density
    • P : Fluid Pressure
    • T : Fluid Temperature
    • Z : Gas Compressibility Factor
    • SG : Gas Specific Gravity

    Tool Output

    • ρf : Average Fluid Density
    • ρg : Gas Density
    • ρl : Liquid Density
    • GOR : Gas Oil Ratio
    • ID : Inside Diameter
    • L : Pipe Length
    • Mf : Total Fluid Mass
    • Mg : Gas Mass
    • Ml : Liquid Mass
    • Mo : Oil Mass
    • Mw : Water Mass
    • Ng : Gas Moles
    • Vf : Total Fluid Volume
    • Vg : Gas Volume
    • Vl : Liquid Volume
    • Vo : Oil Volume
    • Vw : Water Volume
    • WC : Water Cut
    • Xmg : Gas Mass Fraction
    • Xml : Liquid Mass Fraction
    • Xmo : Oil Mass Fraction
    • Xmw : Water Mass Fraction
    • Xvg : Gas Volume Fraction
    • Xvl : Liquid Volume Fraction
    • Xvo : Oil Volume Fraction
    • Xvw : Water Volume Fraction
    • vg : Gas Mole Volume (At T P)

    CALCULATOR : Multi Phase Pipeline Fluid Flow Rate And Velocity [PLUS]   ±

    Calculate pipeline mass flow rate, volume flow rate, mole flow rate and velocity.

    Tool Input

    • schdtype : Pipe Schedule Type
    • diamtype : Pipe Diameter Type
      • ODu : User Defined Outside Diameter
      • IDu : User Defined Inside Diameter
    • wtntype : Wall Thickness Type
      • tnu : User Defined Wall Thickness
    • mvtype : Fluid Density Type
      • GORu : User Defined Gas Oil Ratio
      • WCu : User Defined Water Cut
      • ρu : User Defined Fluid Density
    • voltype : Fluid Volume Type
      • Qou : User Defined Oil Volume Flow Rate
      • Qlu : User Defined Liquid Volume Flow Rate
      • Ngu : User Defined Gas Mole Flow Rate
      • Qfu : User Defined Total Fluid Volume Flow Rate
      • Mfu : User Defined Total Fluid Mass Flow Rate
      • Vfu : User Defined Fluid Velocity
    • ρo : Oil Density
    • ρw : Water Density
    • P : Fluid Pressure
    • T : Fluid Temperature
    • Z : Gas Compressibility Factor
    • SG : Gas Specific Gravity

    Tool Output

    • ρf : Average Fluid Density
    • ρg : Gas Density
    • ρl : Liquid Density
    • GOR : Gas Oil Ratio
    • ID : Inside Diameter
    • Mf : Total Fluid Mass Flowrate
    • Mg : Gas Mass Flowrate
    • Ml : Liquid Mass Flowrate
    • Mo : Oil Mass Flowrate
    • Mw : Water Mass Flowrate
    • Ng : Gas Mole Flowrate
    • Qf : Total Fluid Volume Flowrate
    • Qg : Gas Volume Flowrate
    • Ql : Liquid Volume Flowrate
    • Qo : Oil Volume Flowrate
    • Qw : Water Volume Flowrate
    • Vf : Average Fluid Velocity
    • Vg : Gas Superficial Velocity
    • Vl : Liquid Superficial Velocity
    • Vo : Oil Superficial Velocity
    • Vw : Water Superficial Velocity
    • WC : Water Cut
    • Xmg : Gas Mass Fraction
    • Xml : Liquid Mass Fraction
    • Xmo : Oil Mass Fraction
    • Xmw : Water Mass Fraction
    • Xvg : Gas Volume Fraction
    • Xvl : Liquid Volume Fraction
    • Xvo : Oil Volume Fraction
    • Xvw : Water Volume Fraction
    • vg : Gas Mole Volume (At T P)

    CALCULATOR : Darcy Weisbach Equation And Fanning Equation Friction Factor And Transmission Factor [FREE]   ±

    Calculate Darcy-Weisbach friction factor, Fanning friction factor, Darcy-Weisbach transmission factor and Fanning transmission factor.

    The Darcy friction factor and Fanning friction factor are often converted to transmission factors for gas flow equations. The Fanning friction factor is equal to the Darcy-Weisbach friction factor divided by 4. The transmission factor is equal to the inverse of the square root of the friction factor.

    Tool Input

    • factype : Friction Factor Type
      • fdu : User Defined Darcy Friction Factor
      • ffu : User Defined Fanning Friction Factor
      • Tdu : User Defined Darcy Transmission Factor
      • Tdu : User Defined Fanning Transmission Factor

    Tool Output

    • Td : Darcy Transmission Factor
    • Tf : Fanning Transmission Factor
    • fd : Darcy Friction Factor
    • ff : Fanning Friction Factor

    CALCULATOR : Gas Pipeline Average Flowing Temperature And Pressure [FREE]   ±

    Calculate gas pipeline average temperature and pressure.

    In general, pipeline temperature decays exponentially along the length of the pipeline, and the pressure drops in proportion to the distance squared. The average temperature and pressure are approximate only.

    For average temperature, the ambient temperature and the pipeline insulation is assumed to be constant along the length of the pipeline. The inlet and outlet temperature must be either both above the ambient temperature, or both below the ambient temperature, and may not be equal to the ambient temperature.

    For average pressure, the pipe slope is assumed to be constant along its length.

    Tool Input

    • Ti : Inlet Temperature
    • To : Outlet Temperature
    • Ts : Ambient Temperature
    • Pi : Inlet Pressure
    • Po : Outlet Pressure

    Tool Output

    • Pa : Average Pressure
    • Ta : Average Temperature

    CALCULATOR : Liquid Pipeline Average Flowing Temperature And Pressure [FREE]   ±

    Calculate liquid pipeline average temperature and pressure.

    In general, pipeline temperature decays exponentially along the length of the pipeline, and the pressure drops linearly. The average temperature and pressure are approximate only.

    For average temperature, the ambient temperature and the pipeline insulation is assumed to be constant along the length of the pipeline. The inlet and outlet temperature must be either both above the ambient temperature, or both below the ambient temperature, and may not be equal to the ambient temperature.

    For average pressure, the pipe slope is assumed to be constant along its length.

    Tool Input

    • Ti : Inlet Temperature
    • To : Outlet Temperature
    • Ts : Ambient Temperature
    • Pi : Inlet Pressure
    • Po : Outlet Pressure

    Tool Output

    • Pa : Average Pressure
    • Ta : Average Temperature

    CALCULATOR : Gas Density From Temperature Pressure And Specific Gravity [FREE]   ±

    Calculate single phase gas density from temperature, pressure and specific gravity for common gases: argon Ar, n-decane C10H22, ethylene C2H4, ethyl chloride C2H5Cl, ethane C2H6, propene C3H6, propane C3H8, iso-butane C4H10, n-butane C4H10, iso-pentane C5H12, n-pentane C5H12, n-hexane C6H14, n-heptane C7H16, n-octane C8H18, n-nonane C9H20, methyl chloride CH3Cl, methane CH4, chlorine Cl2, carbon monoxide CO, carbon dioxide CO2, hydrogen H2, steam H2O, hydrogen sulphide H2S, hydrogen chloride HCl, helium He, krypton Kr, nitrogen N2, air N2+O2, ammonia NH3, oxygen O2, sulphur dioxide SO2, xenon Xe.

    Gas molar mass is approximately equal to the molar mass of dry air times the gas specific gravity at standard conditions (for most gases the compressibility factor Z is approximately equal to 1 at standard conditions). The molar mass of dry air is taken as 28.964 kg/kg-mole. For gas mixtures, gas specific gravity is easier to measure than the molar mass.

    Tool Input

    • fluidtype : Gas Type
      • SGu : User Defined Gas Specific Gravity
    • Z : Gas Compressibility Factor
    • P : Gas Pressure
    • T : Gas Temperature

    Tool Output

    • ρ : Gas Density
    • M : Gas Molar Mass
    • R : Gas Constant
    • SG : Gas Specific Gravity
    • vg : Gas Molar Volume (At T P)

    CALCULATOR : Three Phase Black Oil Density [FREE]   ±

    Calculate the density of two phase (oil and water) liquid, single phase gas, or three phase black oil (oil, water and gas). Water cut is measured relative to the total liquid volume (gas volume is ignored). Gas oil ratio (GOR) is measured relative to the oil volume at standard conditions (water volume is ignored).

    Tool Input

    • mvtype : Fluid Density Type
      • GORu : User Defined Gas Oil Ratio
      • WCu : User Defined Water Cut
      • ρu : User Defined Fluid Density
    • ρo : Oil Density
    • ρw : Water Density
    • P : Fluid Pressure
    • T : Fluid Temperature
    • Z : Gas Compressibility Factor
    • SG : Gas Specific Gravity

    Tool Output

    • ρf : Average Fluid Density
    • ρg : Gas Density
    • ρl : Liquid Density
    • GOR : Gas Oil Ratio
    • WC : Water Cut
    • Xmg : Gas Mass Fraction
    • Xml : Liquid Mass Fraction
    • Xmo : Oil Mass Fraction
    • Xmw : Water Mass Fraction
    • Xvg : Gas Volume Fraction
    • Xvl : Liquid Volume Fraction
    • Xvo : Oil Volume Fraction
    • Xvw : Water Volume Fraction
    • vg : Gas Mole Volume (At T P)