Pipeng Toolbox : Beam Added Mass Modules Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Beam Added Mass Modules

Links : ±
CALCULATOR MODULE : Beam Natural Vibration Frequency   ±

Calculate the damped and undamped beam natural vibration frequency for general beams (simply supported, fixed, and cantilever beams). For other beam types (eg circular beams) refer to the module links below.

The lateral natural vibration frequency beam end conditions are: pinned ends (simply supported beams), fixed ends, free fixed ends (cantilever beams), pinned fixed ends, and for beams with no load, pinned free ends, and free ends (unsupported beams). Added mass should be included for submerged or wet beams. The added mass coefficient can be calculated in accordance with DNVGL RP F105. The submerged natural frequency is calculated for still water conditions, with no vortex shedding. For beams on a soft foundation such as soil, use the effective length factor to allow for movement at the beam ends. For defined beam ends such as structures, the effective length factor should be set to one. The buckling load can be calculated using either the Euler equation (suitable for long beams), or the Johnson equation (suitable for short beams). The buckling load is dependent on the end type, and is used for mode 1 vibration only. Buckling normally occurs on the axis with lowest stiffness (I1 or I2). The bending stiffness for vibration and buckling can be defined separately for cases where vibration and buckling are not parallel.

`fn = ca.cd k / (2 π) √((EI) / (m . Le^4)) `
`ca =1 / (1 + F / (Fb))) `
`cd = √(1 - fd^2) `

where :

fn = lateral natural frequency [Hz]
ca = axial load coefficient
cd = damping coefficient
fd = damping factor (0 = undamped 1 = critical damping)
k = mode factor
L = effective beam length
EI = beam E I (bending modulus)
m = beam unit mass or mass per length
F = axial load (+ve in tension and -ve in compression)
Fb = buckling load

The longitudinal natural vibration frequency end conditions are: free fixed ends (cantilever), fixed ends, and free ends (unsupported). The fixed ends and free ends modes have the same natural frequencies, but different mode shapes. The longitudinal natural frequency is independent of cross section, and depends on the beam elastic modulus and density.

`fn = cd k / (2 π L) √(E / ρ) `

where :

fn = natural frequency [Hz]
cd = damping coefficient
k = mode factor
L = beam length
E = beam elastic modulus
ρ = beam density

The torsional natural vibration frequency end conditions are: free fixed ends (cantilever), fixed ends, and free ends (unsupported). The fixed ends and free ends modes have the same natural frequencies, but different mode shapes. The torsional natural frequency is independent of cross section, and depends on the beam shear modulus and density.

`fn = cd k / (2 π L) √(G / ρ) `

where :

fn = natural frequency [Hz]
cd = damping coefficient
k = mode factor
L = beam length
G = beam shear modulus
ρ = beam density

The mode factor k is dependent on the mode number, and the beam end type. The k factors have been taken from the Shock and Vibration handbook. The damping factor should be set to zero for undamped vibration or set greater than zero and less than or equal to one for damped vibration.

Use the Result Table and Result Plot options to display tables and plots. Refer to the figures and help pages for more details about the tools. Refer to the links below for other beam options.

References :

Shock And Vibration Handbook, Cyril M Harris, McGraw Hill
Roark's Formulas For Stress And Strain, Warren C Young, McGraw Hill

Change Module :

CALCULATOR MODULE : Beam Lateral Vibration Frequency   ±

Calculate the damped and undamped beam natural vibration frequency for lateral vibration (simply supported, fixed, and cantilever beams).

Added mass should be included for submerged or wet beams. The added mass coefficient can be calculated in accordance with DNVGL RP F105. The submerged natural frequency is calculated for still water conditions, with no vortex shedding. For beams on a soft foundation such as soil, use the effective length factor to allow for movement at the beam ends. For defined beam ends such as structures, the effective length factor should be set to one.

The mode factor k is dependent on the mode number, and the beam end type. The k factors have been taken from the Shock and Vibration handbook. The damping factor should be set to zero for undamped vibration or set greater than zero and less than or equal to one for damped vibration. For multi layer pipes the bending stiffness can be calculated with the concrete stiffness factor (CSF). The CSF accounts for the additional stiffness provided by the external concrete coating. The concrete stiffness factor is calculated in accordance with DNVGL RP F105. Enter the wall thickness for all layers. Only enter the elastic modulus for layers which affect the pipe stiffness.

Use the Result Table and Result Plot options to display tables and plots. Refer to the figures and help pages for more details about the tools.

References :

Shock And Vibration Handbook, Cyril M Harris, McGraw Hill
Roark's Formulas For Stress And Strain, Warren C Young, McGraw Hill

Change Module :

CALCULATOR MODULE : Beam Lateral Vibration Frequency With Axial Load   ±

Calculate the damped and undamped beam natural vibration frequency for lateral vibration with axial load (simply supported, fixed, and cantilever beams).

For beams with axial load the axis with minimum stiffness (I1 or I2) should be used unless the beam is constrained to deflect on an alternative axis (buckling normally occurs on the minimum stiffness axis). Use the general beam calculators for cases where vibration and buckling are not parallel. The buckling load can be calculated using either the Euler equation (suitable for long beams), or the Johnson equation (suitable for short beams). The buckling load is dependent on the end type, and is used for mode 1 vibration only.

Added mass should be included for submerged or wet beams. The added mass coefficient can be calculated in accordance with DNVGL RP F105. The submerged natural frequency is calculated for still water conditions, with no vortex shedding. For beams on a soft foundation such as soil, use the effective length factor to allow for movement at the beam ends. For defined beam ends such as structures, the effective length factor should be set to one. For pipes the axial load is calculated from temperature and pressure. For general beams the axial load is user defined.

The mode factor k is dependent on the mode number, and the beam end type. The k factors have been taken from the Shock and Vibration handbook. The damping factor should be set to zero for undamped vibration or set greater than zero and less than or equal to one for damped vibration. For multi layer pipes the bending stiffness can be calculated with the concrete stiffness factor (CSF). The CSF accounts for the additional stiffness provided by the external concrete coating. The concrete stiffness factor is calculated in accordance with DNVGL RP F105. Enter the wall thickness for all layers. Only enter the elastic modulus for layers which affect the pipe stiffness.

Use the Result Table and Result Plot options to display tables and plots. Refer to the figures and help pages for more details about the tools.

References :

Shock And Vibration Handbook, Cyril M Harris, McGraw Hill
Roark's Formulas For Stress And Strain, Warren C Young, McGraw Hill

Change Module :

CALCULATOR MODULE : Beam Vibration Added Mass   ±

Calculate submerged beam added mass coefficient and added mass from gap height.

Added mass is included in the unit mass for submerged beams to account for the fluid which is displaced by the beam. The added mass coefficient can be calculated in accordance with DNVGL RP F105. The equation is suitable for undamped vibration of circular beams in a still fluid. For other beam profiles use the beam width. The method may not be valid for other profiles (engineering judgment is required). The gap height is measured along the axis of vibration and is assumed to be perpendicular to the adjacent surface.

Use the Result Table and Result Plot options to display tables and plots. Refer to the help pages for more details about the tools.

References :

Shock And Vibration Handbook, Cyril M Harris, McGraw Hill
Roark's Formulas For Stress And Strain, Warren C Young, McGraw Hill

Change Module :

CALCULATOR MODULE : Beam Cross Section   ±

Calculate beam cross section properties for circular pipes: cross section area, moment of inertia, polar moment of inertia, mass moment of inertia, section modulus, EI, EA, EAα, unit mass, total mass, unit weight and specific gravity.

Unit mass can be calculated with or without added mass. Added mass is included in the unit mass for submerged beams to account for the fluid which is displaced by the beam. The added mass coefficient can be calculated in accordance with DNVGL RP F105. For multi layer pipes the bending stifness can be calculated with the concrete stiffness factor (CSF). The CSF accounts for the additional stiffness provided by the external concrete coating. Use the Result Table option to display the cross section properties versus wall thickness. Refer to the help pages for more details.

Reference : Roark's Formulas For Stress And Strain, Warren C Young, McGraw Hill

Change Module :

Related Modules :

CALCULATOR MODULE : Beam Cross Section Added Mass   ±

Calculate beam cross section added mass coefficient and added mass from gap height for circular pipes and beams.

Added mass is included in the unit mass for submerged beams to account for the fluid which is displaced by the beam. The added mass coefficient can be calculated in accordance with DNVGL RP F105. The equation is suitable for undamped vibration of circular beams in still fluid. For circular pipes the diameter should be used as the characteristic length. For other profile shapes the width can be used as the characteristic length. The method may not be valid for other profile shapes (engineering judgement is required). Refer to the help pages for more details.

Reference : Roark's Formulas For Stress And Strain, Warren C Young, McGraw Hill

Change Module :