Pipeng Toolbox : ASME B31.3 Allowable Stress Modules Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

ASME B31.3 Allowable Pipe Stress Modules

Links : ±
CALCULATOR MODULE : ASME B31.3 Process Piping Line Pipe Schedule   ±

Calculate ASME B31.3 process piping schedule for metal and plastic piping.

The piping minimum wall thickness and hoop stress wall thickness schedule can be calculated from the nominal wall thickness, fabrication tolerance and corrosion allowance.

`tm = tn - fa `
`tm = (1 - fx) tn `
`t = tm - c `

where :

tn = nominal wall thickness
tm = minimum wall thickness
t = hoop stress wall thickness
c = corrosion thickness allowance
fa = negative fabrication thickness allowance
fx = negative fabrication fraction

The minimum wall thickness equals the nominal wall thickness minus the fabrication allowance. The pressure containment wall thickness equals the nominal wall thickness minus the fabrication tolerance, and minus the corrosion allowance. Fabrication tolerance can be defined by either a fabrication allowance, or a fabrication fraction. The pipe diameter can be defined by either the outside diameter or the inside diameter. Use the Result Table option to display a table of pipe dimensions versus wall thickness, wall tolerance, or piping diameter for metal pipes, or pipe dimension versus wall thickness for plastic pipes.

Calculate metal piping maximum and minimum diameter schedule. Use the Result Table option to display a table of pipe dimensions versus wall thickness, wall tolerance, or piping diameter.

Calculate piping unit mass and joint mass schedule for metal and plastic piping. Use the Result Table option to display a table of pipe dimensions and mass versus wall thickness.

Calculate piping tensile stress, yield stress and allowable schedule for metal piping. Use the Result Table option to display a table of stress versus material type.

Plastic pipe wall thickness can be defined by wall thickness or diameter ratio (DR or IDR). Select standard diameter ratios from the plastic pipe schedule (SDR or SIDR), or use user defined diameter ratios (DR or IDR).

Reference : ANSI/ASME B31.3 : Process Piping (2018)

Change Module :

CALCULATOR MODULE : ASME B31.3 Process Piping Basic Allowable Stress   ±

Calculate ASME B31.3 process piping allowable stress (S), yield stress (SYT) and tensile stress (SUT) from temperature for low pressure piping (ASME B31.3 Table A-1) and high pressure piping (ASME B31.3 Table K-1).

Stress values are interpolated from the US data tables (US units govern). For temperatures below the data range, the stress value is constant (fracture toughness should also be considered for low temperature operation). For temperatures above the data range the stress values can either be constant value from the end point, constant slope from the end point, or zero from the end point. Engineering judgement is required to use extrapolated values above the data range.

Use the Data Plot option to plot the allowable stress versus temperature for the selected material. Use the Data Table option to display the data table in the popup window (Table A-1 or K-1). Use the Result Table option to display a table of allowable stress versus material type. Refer to the help pages for notes on the data tables. Change units on the setup page. Use the workbook ASME B31.3 data tables to look up allowable stress data.

Note : The choice of high pressure versus low pressure service is at the discretion of the owner (section FK300). The ASME B16.5 Class 2500 pressure temperature rating for the material group is often used as a criteria.

Reference : ANSI/ASME B31.3 : Process Piping (2018)

Change Module :

Related Modules :

CALCULATOR MODULE : ASME B31.3 Process Piping Wall Thickness   ±

Calculate ASME B31.3 process piping wall thickness from temperature for low pressure steel pipe (Table A-1), high pressure steel pipe (Table K-1), and plastic piping.

Allowable stress for steel pipe is calculated from Table A-1 and Table K-1 US values (US units govern). Change units on the setup page. Stress values can be extrapolated for temperatures above the data range (care is required when using extrapolated values). The wall thickness calculations are valid for internal overpressure only. For combined internal and external pressure use the pressure difference in the calculations.

Use the Data Plot option to plot the allowable stress versus temperature for the selected material. Use the Data Table option to display the data table in the popup window (Table A-1, or Table K-1). Use the Result Table option to display a table of wall thickness and allowable pressure versus material type (for the calculate wall thickness option the allowable pressure equals the design pressure. for the specified wall thickness option the wall thickness equals the specified wall thickness). Refer to the help pages for notes on the data tables. Change units on the setup page. Use the workbook ASME B31.3 data tables to look up allowable stress data.

Note : The choice of high pressure versus low pressure service is at the discretion of the owner (section FK300). The ASME B16.5 Class 2500 pressure temperature rating for the material group is often used as a criteria.

Reference : ANSI/ASME B31.3 : Process Piping (2018)

Change Module :

CALCULATOR MODULE : ASME B31.3 Process Piping Bend   ±

Calculate ASME B31.3 process piping minimum thickness for formed bends, and allowable pressure for miter bends.

Minimum thickness of formed bends is calculated for the inside radius, the oputside radius, and the centerline radius. Bend thinning on the outside radius is estimated using the method from ASME B31.1. The estimated minimum bend thickness after thinning should be ≥ the required minimum bend thickness on the outside radius (extrados). Use the goal seek option to calculate the required straight pipe nominal wall thickness (before bending), for the minimum thickness on the outside radius (after bending).

The allowable pressure for miter bends is calculated from the nominal wall thickness. Use the goal seek option to calculate the required miter bend nominal wall thickness for the design pressure. Use the workbook ASME B31.3 data tables to look up allowable stress data.

Reference : ANSI/ASME B31.3 : Process Piping (2018)

Change Module :

CALCULATOR MODULE : ASME B31.3 Process Piping Allowable Bolt Load And Bolt Stress   ±

Calculate ASME B31.3 process piping bolt design load and design stress from temperature (ASME B31.3 Table A-2). Stress values are interpolated from the US data tables (US units govern).

Bolt load is calculated from the design stress and the tensile area for either ANSI threads or ISO threads. For temperatures below the data range, the stress value is constant (fracture toughness should also be considered for low temperature operation). For temperatures above the data range the stress values can either be constant value from the end point, constant slope from the end point, or zero from the end point. Engineering judgement is required to use extrapolated values above the data range.

Use the Data Plot option to plot the design stress versus temperature for the selected material. Use the Data Table option to display the data table (Table A-2). Use the Result Table option to display a table of design stress and design load versus either material type or bolt diameter. Refer to the help pages for notes on the data tables. Use the workbook ASME B31.3 data tables to look up bolt allowable stress data.

Reference : ANSI/ASME B31.3 : Process Piping (2018)

Change Module :

Related Modules :

DATA MODULE : ASME B31.3 Process Piping Allowable Stress ( Open In Popup Workbook )   ±
DATA MODULE : ASME B31.3 Process Piping Allowable Bolt Stress ( Open In Popup Workbook )   ±