Pipeng Toolbox : ASME B31.4 Liquid Pipeline Modules Blank User
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Demo

ASME B31.4 Liquid Pipeline Modules

Links : ±
CALCULATOR MODULE : ASME B31.4 Oil And Liquid Pipeline   ±
CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Wall Thickness   ±

Calculate ASME B31.4 oil and liquid pipeline wall thickness from hoop stress for onshore and offshore pipelines.

Select the appropriate line pipe schedule (ASME or ISO etc) and stress table (API, ASM, DNV etc), and material. Wall thickness is calculated using Barlow's formula. For offshore pipelines either the pipe outside diameter or the mid wall diameter can be used to calculate wall thickness. The wall thickness should be checked for all elevations. Use the Result Plot option to plot required wall thickness versus elevation, or hoop stress versus elevation for user defined wall thickness.

Reference : ANSI/ASME B31.4 : Pipeline Transportation Systems For Liquids And Slurries (2012)

Change Module :

CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Hoop Stress   ±
CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Hydrotest Pressure   ±

Calculate ASME B31.4 oil and liquid pipeline test pressure and hoop stress check for onshore and offshore pipelines.

Select the appropriate line pipe schedule (ASME or ISO etc) and stress table (API, ASM, DNV etc), and material. Hoop stress is calculated using Barlow's formula. For offshore pipelines either the pipe outside diameter or the mid wall diameter can be used to calculate hoop stress. The test pressure and hoop stress should be checked for all elevations. Use the Result Plot option to plot the required test pressure versus elevation, or hoop stress verus elevation for user defined test pressure.

Reference : ANSI/ASME B31.4 : Pipeline Transportation Systems For Liquids And Slurries (2012)

Change Module :

Related Modules :

CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Allowable Stress   ±

Calculate ASME B31.4 oil and liquid pipeline allowable stress for onshore and offshore pipelines.

Select the appropriate stress table (API, ASM, DNV etc), and material. Use the Result Table option to display the results for the selected stress table (click the Result Table button on the plot bar, then click the make table button). For metal pipeline the pressure design thickness equals the nominal wall thickness minus the corrosion allowance. Fabrication tolerance is ignored.

Reference : ANSI/ASME B31.4 : Pipeline Transportation Systems For Liquids And Slurries (2012)

Change Module :

CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Yield Stress   ±
CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Ripple Defect   ±
CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Local Pressure   ±
CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Branch Reinforcement   ±
CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Design Pressure   ±

Calculate ASME B31.4 oil and liquid pipeline maximum allowable design pressure from pressure design wall thickness and allowable stress.

For subsea pipelines the allowable pressure is the maximum allowable local pressure difference across the pipe wall. The pressure difference equals the internal pressure minus the external pressure. For onshore pipelines the allowable pressure is the maximum allowable local internal pressure. The local internal and external pressure varies with elevation. Use the Result Table option to display the allowable pressure for the selected pipe diameter schedule.

Reference : ANSI/ASME B31.4 : Pipeline Transportation Systems For Liquids And Slurries (2012)

Change Module :

CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Mass And Weight   ±

Calculate ASME B31.4 liquid pipeline unit mass (mass per length), unit weight (weight per length), and total mass. The mass per joint can be calculated from the joint length. Construction quantities can be calculated from the total pipe length. Pipe unit mass and pipe unit weight (weight per length) can be calculated for multi layer pipelines (dry empty, dry full, wet empty and wet full pipelines). For multi layer pipelines, the first internal layer is the line pipe. Change the number of layers on the setup page. The line pipe diameter and thickness are calculated from the pipe schedule.

Use the Result Table option to display a table of pipe mass versus schedule wall thickness for the selected diameter.

Reference : ANSI/ASME B31.4 : Pipeline Transportation Systems For Liquids And Slurries (2012)

Change Module :

CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Fluid Volume And Mass   ±

Calculate ASME B31.4 liquid pipeline fluid density, fluid volume and fluid mass for two phase gas liquid pipelines, and three phase black oil pipelines (gas water and oil).

The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet).

Reference : ANSI/ASME B31.4 : Pipeline Transportation Systems For Liquids And Slurries (2012)

Change Module :

CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Fluid Velocity And Flow Rate   ±

Calculate ASME B31.4 liquid pipeline fluid velocity and flow rate for two phase gas liquid piping, and three phase black oil piping (gas water and oil).

The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet).

Reference : ANSI/ASME B31.4 : Pipeline Transportation Systems For Liquids And Slurries (2012)

Change Module :

CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Flexibility And Stress Factor   ±
DATA MODULE : ASME ANSI API Design Factor ( Open In Popup Workbook )   ±