Pipeng Toolbox : Gas Friction Factor Modules Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Gas Pipeline Friction Factor Modules

Links : ±
CALCULATOR MODULE : Gas Pipeline Pressure Loss From The Moody Diagram   ±

Calculate pressure loss for single phase gas pipelines using the Darcy Weisbach version of the Moody Diagram.

`fdl = 64/(Re) `
`1/(√fdo) = -2 log10(r/3.7 + 2.51 / (Re √(fdo))) `
`1/(√fdm) = -2 log10(r/3.7 + 2.825 / (Re √(fdm))) `

where :

fdl = Hagen-Poiseuille laminar flow equation Darcy friction factor
fdo = original Colebrook White equation Darcy friction factor
fdm = modified Colebrook White equation Darcy friction factor
Re = Reynolds number
r = relative roughness

For low Reynolds numbers Re < 2000, the fluid flow is laminar and the Darcy friction factor should be calculated using the Hagen-Poiseuille laminar flow equation. For high Reynolds numbers Re > 4000, the fluid flow is turbulent and the Darcy friction factor should be calculated using one of the turbulent flow equations. In the transition region 2000 < Re < 4000, the flow is unstable and the friction loss cannot be reliably calculated. The minor loss K factor is used to account for pipeline fittings such as bends, tees, valves etc..

The calculators use the Darcy-Weisbach version of the Moody diagram. The Fanning transmission factor combined with the Fanning equation is commonly used for gas flow. The results for the Darcy and Fanning equations are identical provided that the correct friction factor is used.

`ff = (fd) / 4 `
`tf = 1 / (√ff)= 2 / (√fd) `

where :

fd = Darcy friction factor
ff = Fanning friction factor
tf = Fanning transmission factor

The gas specific gravity is the ratio of gas density over the density of dry air at base temperature and pressure. The compressibility factor is assumed to equal 1 at the base conditions. The gas specific gravity is proportional to the gas molar mass.

Change Module :

Related Modules :

CALCULATOR MODULE : Gas Rectangular Duct Pressure Loss   ±

Calculate single phase gas flow in a rectangular duct.

The Darcy friction factor can be calculated from the Moody diagram using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation or the modified Colebrook White equation. The Moody diagram can be used for rectangular ducts if the Reynolds number is calculated from the hydraulic diameter (equals four times the cross section area divided by the perimeter). Minor losses can be calculated using either the K factor, an equivalent length, equivalent diameters, or the flow coefficient. Change flow coefficient units on the setup page (Av, Kv, or Cv).

Change Module :

Related Modules :

CALCULATOR MODULE : Pipeline Flow Rate   ±
CALCULATOR MODULE : API 520 Darcy Friction Factor   ±

Calculate API 520 Darcy friction factor and pressure loss factor for single phase liquid and single phase gas.

The Darcy friction factor can be caclulated from either the Moody diagram or the Von Karman rough pipe equation (API 520 Annex E).

At high Reynolds numbers the Moody diagram friction factor is fully turbulent and is dependent on the pipe roughness only. The pressure loss factor (fLe/ID) includes minor losses. Minor losses can be entered as either a K factor, an equivalent added length, or an equivalent added length over diameter ratio.

Reference : API 520 Sizing, Selection And Installation Of Pressure Relieving Devices (2014)

Change Module :

Related Modules :

DATA MODULE : Pipe Fitting And Valve ( Open In Popup Workbook )   ±