Pipeng Toolbox : Duct Friction Loss Modules Blank User
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Demo

Duct Flow Friction Loss Modules

Links : ±
CALCULATOR MODULE : Liquid Rectangular Duct Pressure Loss   ±

Calculate single phase liquid flow in a rectangular duct.

The Moody diagram is valid for rectangular ducts provided that the Reynolds number is calculated from the hydraulic diameter (equal to four times the cross section area divided by the perimeter). The Darcy friction factor can be calculated from the Moody diagram using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation or the modified Colebrook White equation. The minor loss K factor is used to account for pipeline fittings such as bends, tees, valves etc.. Change flow coefficient units on the setup page (Av, Kv, or Cv).

Change Module :

Related Modules :

CALCULATOR MODULE : Gas Rectangular Duct Pressure Loss   ±

Calculate single phase gas flow in a rectangular duct.

The Darcy friction factor can be calculated from the Moody diagram using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation or the modified Colebrook White equation. The Moody diagram can be used for rectangular ducts if the Reynolds number is calculated from the hydraulic diameter (equals four times the cross section area divided by the perimeter). Minor losses can be calculated using either the K factor, an equivalent length, equivalent diameters, or the flow coefficient. Change flow coefficient units on the setup page (Av, Kv, or Cv).

Change Module :

Related Modules :

CALCULATOR MODULE : API 520 Darcy Friction Factor   ±

Calculate API 520 Darcy friction factor and pressure loss factor for single phase liquid and single phase gas.

The Darcy friction factor can be caclulated from either the Moody diagram or the Von Karman rough pipe equation (API 520 Annex E).

At high Reynolds numbers the Moody diagram friction factor is fully turbulent and is dependent on the pipe roughness only. The pressure loss factor (fLe/ID) includes minor losses. Minor losses can be entered as either a K factor, an equivalent added length, or an equivalent added length over diameter ratio.

Reference : API 520 Sizing, Selection And Installation Of Pressure Relieving Devices (2014)

Change Module :

Related Modules :