Pipeng Toolbox : Multi Phase Modules Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Multi Phase Fluid Modules

Links : ±
CALCULATOR MODULE : Pipeline Flow Rate   ±
CALCULATOR MODULE : Two Phase Gas Liquid Viscosity   ±

Calculate dynamic and kinematic viscosity for two phase gas liquids (gas and oil or gas and liquid).

Kinematic viscosity is equal to the dynamic viscosity divided by the density of the fluid. The viscosity of two phase fluids and mixtures can be calculated from the dynamic viscosity and the volume fraction. The gas oil ratio is the ratio of gas moles to oil volume. It is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters).

Change Module :

Related Modules :

CALCULATOR MODULE : Three Phase Gas Oil Water (Black Oil) Viscosity   ±

Calculate dynamic and kinematic viscosity for three phase black oil (gas oil and water).

Kinematic viscosity is equal to the dynamic viscosity divided by the density of the fluid. The viscosity of two phase fluids and mixtures can be calculated from the dynamic viscosity and the volume fraction.

The gas oil ratio is the ratio of gas moles to oil volume. The gas mass fraction is the ratio of gas mass to total fluid mass. The gas volume fraction is the ratio of gas volume to total fluid volume. Water cut is the ratio of water volume over total liquid volume (equals the water volume fraction in the liquid). Gas volume is dependent on fluid temperature and pressure. Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters).

Change Module :

Related Modules :

CALCULATOR MODULE : Fluid Density And Volume   ±

Calculate fluid density for single phase fluid (oil, water, or gas), two phase fluid (oil and gas, or oil and water), and three phase black oil (oil, water and gas).

The gas oil ratio is the ratio of gas moles to oil volume. Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters). The gas mass fraction is the ratio of gas mass to total fluid mass. The gas volume fraction is the ratio of gas volume to total fluid volume. Water cut is the ratio of water volume over total liquid volume (equals the water volume fraction in the liquid). Gas volume is dependent on fluid temperature and pressure.

Change Module :

Related Modules :

CALCULATOR MODULE : Two Phase Fluid Gas Oil Ratio GOR   ±
CALCULATOR MODULE : Two Phase Liquid Water Cut Ratio   ±
CALCULATOR MODULE : Two Phase Gas Liquid Density   ±

Calculate fluid density for two phase fluid (oil and gas, or gas and water).

The gas oil ratio is the ratio of gas moles to oil volume. The gas mass fraction is the ratio of gas mass to total fluid mass. The gas volume fraction is the ratio of gas volume to total fluid volume. Gas volume is dependent on fluid temperature and pressure. Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters).

Change Module :

Related Modules :

CALCULATOR MODULE : Three Phase Gas Oil Water (Black Oil) Density   ±

Calculate fluid density for three phase black oil (oil, water and gas).

The gas oil ratio is the ratio of gas moles to oil volume. The gas mass fraction is the ratio of gas mass to total fluid mass. The gas volume fraction is the ratio of gas volume to total fluid volume. Water cut is the ratio of water volume over total liquid volume (equals the water volume fraction in the liquid). Gas volume is dependent on fluid temperature and pressure. Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters).

Change Module :

Related Modules :

CALCULATOR MODULE : Fluid Mixture From Kay's Rule   ±

Calculate pseudo-critical properties (temperature, pressure, accentric factor, molar mass) of a fluid mixture using the simple form of Kay's rule with no interaction parameters.

The mole fraction of component one is automatically adjusted so that the sum of the mole fractions equals one. The mixture properties are approximate.

    Related Modules :