Calculate pressure loss for single phase gas pipelines using either the Weymouth equation, the Panhandle A equation, the Panhandle B equation, or the general equation (user defined Darcy friction factor).
`Q = 77.57 ((Tb) / (Pb)) ((P^2 - ess. Po^2) / (SG .T. L. ls Z. fd))^0.5 D^2.5 `General ` `
`Q = 433.5 ((Tb) / (Pb)) E ((P^2 - ess. Po^2) / (SG .T. L. ls. Z))^0.5 D^2.667 `Weymouth` `
`Q = 437.87 ((Tb) / (Pb))^1.0788 E ((P^2 - ess. Po^2) / (SG^0.8539. T .L. ls. Z))^0.5394 D^2.6182 `Panhandle A` `
`Q = 738.73 ((Tb) / (Pb))^1.02 E ((P^2 - ess. Po^2) / (SG^0.961. T. L. ls. Z))^0.51 D^2.53 `Panhandle B` `
`ss = (z2 - z2) SG. mma. g / (Ro T Z) `
`es = exp(ss) `
`ls = (es^2 - 1) / (ss) `
where :
Q = mole flowrate (SCFD)
Po = outlet pressure (psia)
P = inlet pressure (psia)
Tb = base temperature (60 F)
Pb = base pressure (1 atm)
fd = Darcy friction factor
E = efficiency factor
L = piping length (mi)
D = piping inside diameter (in)
K = total friction loss factor for fittings
g = gravity constant
zi = inlet elevation
zo = outlet elevation
ss = elevation exponent
es = elevation pressure factor
ls = elevation length factor
Pipe roughness can be accounted for using the efficiency factor. Minor losses such as bends, valves, tees and other pipe fittings should be included by adding a minor loss equivalent length to the pipeline length. The calculations are not suitable for laminar flow.
Change Module :
Related Modules :