Pipeng Toolbox : Van Der Waals Equation Modules Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Van Der Waals Formula Modules

Links : ±
CALCULATOR MODULE : Gas Compressibility Factor   ±

Calculate gas compressibility factor or Z factor.

The compressibility factor is used to account for the non ideal behaviour of real gases. The non ideal gas law is expressed as

` P V = Z Ro T `

where :

P = gas pressure `
`T = gas temperature `
`V = gas mole volume `
`Z = gas compressibility factor `
`Ro = universal gas constant

The compressibility factor canbe calculated using either the Peng Robinson, Soave, Redlich Kwong or Van Der Waals cubic equations of state (EOS), or using the virial equation.

Change Module :

Related Modules :

CALCULATOR MODULE : Gas Compressibility Factor From The Cubic Equation   ±

Calculate gas compressibility factor or Z factor from the cubic equation (Poling).

The compressibility factor is used to account for the non ideal behaviour of real gases. The non ideal gas law is expressed as

`P V = Z Ro T `

where :

P = gas pressure
T = gas temperature
V = gas mole volume
Z = gas compressibility factor
Ro = universal gas constant

The compressibility factor can be calculated using either the Peng Robinson, Soave, Redlich Kwong or Van Der Waals cubic equations of state (EOS). The gas data is taken from Poling.

Reference : Poling, Prausnitz And O'Connell : The Properties of Gases And Liquids : McGraw Hill

Change Module :

Related Modules :

CALCULATOR MODULE : Fluid Mixture From Kay's Rule   ±

Calculate pseudo-critical properties (temperature, pressure, accentric factor, molar mass) of a fluid mixture using the simple form of Kay's rule with no interaction parameters.

The mole fraction of component one is automatically adjusted so that the sum of the mole fractions equals one. The mixture properties are approximate.

    Related Modules :