Pipeng Toolbox : Z Factor Modules Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Fluid Z Factor Or Compressibility Factor Modules

Links : ±
CALCULATOR MODULE : Compressible Flow Gas Property   ±

Calculate compressible flow gas properties.

Calculate gas specific heat constant pressure, specific heat constant volume, specific heat ratio, molar mass, gas constant, gas specific gravity, gas compressibility factor and density from gas temperature and pressure. The gas compressibility factor is calculated from the critical point temperature, critical point temperature, and the accentric factor using either the Peng Robinson, Soave, Redlich Kwong or Van Der Waals equation of state (EOS).

Reference : Fluid Mechanics, Frank M White, McGraw Hill

Change Module :

Related Modules :

CALCULATOR MODULE : API 520 Fluid Property   ±

Calculate API 520 gas and steam properties.

Properties include density, specific heat constant pressure, specific heat constant volume, specific heat ratio, molar mass, gas constant, gas specific gravity, and gas compressibility factor. The gas compressibility factor is calculated from the critical point temperature, critical point temperature, and the accentric factor using either the Peng Robinson, Soave, Redlich Kwong or Van Der Waals equations of state (EOS).Steam properties are calculated from IAPWS R7-97, industrial properties of steam.

Gas specific gravity at standard conditions is approximately equal to the gas molar mass divided by the molar mass of dry air. The molar mass of dry air is taken as 28.964 kg/kg-mole.

Reference : API 520 Sizing, Selection And Installation Of Pressure Relieving Devices (2014)

Change Module :

Related Modules :

CALCULATOR MODULE : Gas Compressibility Factor   ±

Calculate gas compressibility factor or Z factor.

The compressibility factor is used to account for the non ideal behaviour of real gases. The non ideal gas law is expressed as

` P V = Z Ro T `

where :

P = gas pressure `
`T = gas temperature `
`V = gas mole volume `
`Z = gas compressibility factor `
`Ro = universal gas constant

The compressibility factor canbe calculated using either the Peng Robinson, Soave, Redlich Kwong or Van Der Waals cubic equations of state (EOS), or using the virial equation.

Change Module :

Related Modules :

CALCULATOR MODULE : Gas Compressibility Factor From The Virial Equation   ±

Calculate gas compressibility factor or Z factor from the virial equation.

The compressibility factor is calculated using the second order virial equation

`Z = (P.vm) / (Ro .T) = 1 + B / (vm) `
`B = a - b.e^(c / T) `

where :

Z = the compressibility factor
P = gas pressure
T = gas temperature
vm = gas mole volume
Ro = the universal gas constant
B = the second order virial coefficient
a, b, c are Virial constants

The gas mole volume is calculated by solving the quadratic equation, and the compressibility factor is calculated from the mole volume.

Reference : Kaye And Laby : Tables Of Physical And Chemical Constants

Change Module :

Related Modules :

CALCULATOR MODULE : Gas Compressibility Factor From The Cubic Equation   ±

Calculate gas compressibility factor or Z factor from the cubic equation (Poling).

The compressibility factor is used to account for the non ideal behaviour of real gases. The non ideal gas law is expressed as

`P V = Z Ro T `

where :

P = gas pressure
T = gas temperature
V = gas mole volume
Z = gas compressibility factor
Ro = universal gas constant

The compressibility factor can be calculated using either the Peng Robinson, Soave, Redlich Kwong or Van Der Waals cubic equations of state (EOS). The gas data is taken from Poling.

Reference : Poling, Prausnitz And O'Connell : The Properties of Gases And Liquids : McGraw Hill

Change Module :

Related Modules :

CALCULATOR MODULE : Fluid Mixture From Kay's Rule   ±

Calculate pseudo-critical properties (temperature, pressure, accentric factor, molar mass) of a fluid mixture using the simple form of Kay's rule with no interaction parameters.

The mole fraction of component one is automatically adjusted so that the sum of the mole fractions equals one. The mixture properties are approximate.

    Related Modules :

    CALCULATOR MODULE : Yaws Gas Density From Critical Point   ±

    Calculate gas density from critical pressure, critical temperature and acentric factor data for organic and inorganic fluids (Yaws).

    The compressibility factor can be calculated from either the Peng Robinson, Soave, Redlich Kwong, or van der Waals cubic equation. The compressibility factor calculation is valid for gas phase only. The gas specific gravity is approximately equal to the ratio of the gas molar mass over the molar mass of air (28.964 g/mol).

    Reference : Yaws Chemical Properties Handbook, McGraw Hill

    CALCULATOR MODULE : Maths Polynomial   ±

    Calculate polynomial coefficients, roots or zeros, maximum and minimum, points of inflection, and interpolate polynomial value, slope and curvature.

    Polynomials can be calculated for linear (first order), quadratic (second order), cubic (third order), quartic (fourth order), quintic (fifth order), sextic (sixth order), septic (seventh order), octic (eighth order) or nth degree. For polynomials with all real roots, all roots can sometimes be solved simultaneously using the Durand Kerner method. In other cases solve for individual roots. The maximum or minimum points (slope equals zero) and the inflection points (curvature equals zero) can also be calculated. Use a plot page to plot the polynomial and identify the approximate root values if any.

    Lagrange's method is used to interpolate between data points. This method is useful for interpolating between data points, but can give poor results when extrapolating outside the data range. Evenly spaced data points can result in cyclic behaviour.

    Polynomial coefficients can be calculated from the real roots, and the nth coefficient. There are an infinite number of polynomials with the same roots. The nth coefficient is required in order to calculate unique coefficients. This method only applies if all of the roots are real. Polynomial coefficients can also be calculated from XZ data points.

    Change Module :

    DATA MODULE : Fluid Compressibility Factor ( Open In Popup Workbook )   ±

    Fluid ideal gas law Z factor or compressibility factor data.

    The Z factor is commonly used to adjust the ideal gas law to account for the behaviour of real gases. The Z factor can be obtained from tables, or calculated using cubic equations of state (Van Der Waals, Peng Robinson, Soave, Redlich Kwong equations), or from other relationships such as the Virial equation.

      Related Modules :