Pipeng Toolbox : Gamma Function Modules Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Gamma Function Modules

Links : ±
CALCULATOR MODULE : Maths Special Function   ±

Calculate special function values.

Elliptic integrals are calculated using Carlsons forms. Jacobi elliptic functions are calculated using Landens transformation. The Gamma function is calculated using the Lanczos approximation.

Reference : Numerical Recipes, The Art Of Scientific Computing, Press, Teukolsky, Vetterling, Flannery, Cambridge University Press

Change Module :

CALCULATOR MODULE : Maths Gamma Function   ±

Calculate the Gamma function Γ(z), the log Gamma function ln(Γ(z)), the incomplete lower Gamma function γ(z,x), the incomplete upper Gamma function Γ(z,x), the incomplete lower Gamma unit function PL(z,x), the incomplete upper Gamma unit function PU(z,x).

The Gamma function is a continuous form of the integer factorial:

`n! = Γ(n + 1) `

The Gamma function is recursive for values greater than 1 or less than 0 (z > 1 or z < 0).

`Γ(z + 1) = z Γ(z) `

The Gamma function is invalid if z equals zero, or if z is a negative integer. The lower incomplete Gamma unit functions are defined as

`PL(z,x) = γ(z,x) / Γ(z) `
`PU(z,x) = Γ(z,x) / Γ(z) `

Use the Result Plot option to plot the Gamma functions versus z.

Reference : Numerical Recipes, The Art Of Scientific Computing, Press, Teukolsky, Vetterling, Flannery, Cambridge University Press

Change Module :