Pipeng Toolbox : Pipe Bending Modules Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Pipeline Bending Modules

Links : ±
CALCULATOR MODULE : Beam Bending   ±

Calculate beam bending shear force, bending moment, slope and deflection for general beams using the Euler Bernoulli beam equation.

The Euler Bernoulli beam equation is suitable for slender beams (it does not include the effect of shear), and for small angles (θ < 0.5 rad). The calculations are not valid past the beam end points. For combined loads, the shear force, bending moment, slope and deflection are assumed to be additive. The beam end conditions are of the form left end - right end (for example Pin-Fix is left end pinned and right end fixed). All distances are measured from the left end of the beam.

Beam end types include: free fixed (cantilever), guided fixed, pinned fixed, fixed fixed (built in or fixed), pinned pinned (simply supported), and guided pinned beam ends.

Combined loads include axial loads, point loads, distributed loads, weight loads, concentrated moments, angular displacements, lateral displacements, and uniform temperature gradient.

For beams with compressive axial loads the bending moment, slope and deflection tend to infinity as the axial load tends to the buckling load. For tension loads, the bending moment, slope and deflection decrease with increasing tension. The buckling load can be calculated using either the Euler equation (suitable for long beams), the Johnson equation (suitable for short beams), or the buckling load equation can be determined from the transition length.

The effective length factor should be used for beams on a soft foundation such as soil, where the beam ends are poorly defined. For defined beam ends, such as structures, the effective length factor should be set to one (fe = 1).

Use the Result Plot option to plot the bending moment, shear force, slope, deflection and stress versus position x. Refer to the figures and help pages for more details. Refer to the links below for other beam options.

Reference : Roark's Formulas For Stress And Strain, Warren C Young, McGraw Hill

Change Module :

CALCULATOR MODULE : Pipe Beam Bending   ±

Calculate beam bending shear force, bending moment, slope and deflection for pipe beams using the Euler Bernoulli beam equation.

The Euler Bernoulli beam equation is suitable for slender beams (it does not include the effect of shear), and for small angles (θ < 0.5 rad). The calculations are not valid past the beam end points. For combined loads, the shear force, bending moment, slope and deflection are assumed to be additive. The beam end conditions are of the form left end - right end (for example Pin-Fix is left end pinned and right end fixed). All distances are measured from the left end of the beam.

Beam end types include: free fixed (cantilever), guided fixed, pinned fixed, fixed fixed (built in or fixed), pinned pinned (simply supported), and guided pinned beam ends.

Combined loads include axial loads, point loads, distributed loads, weight loads, concentrated moments, angular displacements, lateral displacements, and uniform temperature gradient.

For beams with compressive axial loads the bending moment, slope and deflection tend to infinity as the axial load tends to the buckling load. For tension loads, the bending moment, slope and deflection decrease with increasing tension. The buckling load can be calculated using either the Euler equation (suitable for long beams), the Johnson equation (suitable for short beams), or the buckling load equation can be determined from the transition length.

The effective length factor should be used for beams on a soft foundation such as soil, where the beam ends are poorly defined. For defined beam ends, such as structures, the effective length factor should be set to one (fe = 1).

For multi layer beams the concrete stiffness can be included in EI by multiplying EI by a factor (1 + CSF). The bending stress at the field joint should also be multiplied by the factor (1 + CSF) to account for stress localisation (select the pipe joint option for bending stiffness) . The concrete stiffness factor is calculated from the ratio of concrete EI over beam EI in accordance with DNVGL RP F105. The method is suitable for circular beams and pipes. For other profile shapes engineering judgement is required.

The stress check includes longitudinal stress, Tresca combined stress, and von Mises equivalent stress. The bending stress is calculated at the pipe mid wall. The hoop stress is calculated using the Barlow mid wall equation with the nominal wall thickness.

:

`Sh = (P - Pe) (OD - tn) / (2 tn) `

where :

Sh = hoop stress
P = internal pressure
Pe = external pressure
OD = pipe outside diameter
tn = pipe nominal thickness

Use the Result Plot option to plot the bending moment, shear force, slope, deflection and stress versus position x. Refer to the figures and help pages for more details.

Reference : Roark's Formulas For Stress And Strain, Warren C Young, McGraw Hill

Change Module :

CALCULATOR MODULE : Line Pipe EA And EI   ±
CALCULATOR MODULE : Pipeline Combined Stress Check   ±

Calculate pipeline longitudinal stress, Tresca combined stress, and Von Mises equivalent stress checks. Hoop stress is calculated using either Barlow's equation (suitable for thin wall pipes), the log equation (suitable for thick wall pipes), or Lame's equation (suitable for thick wall pipes).

The axial load is calculated using the thick wall formula (API RP 1111 and DNV OS F101). For onshore and offshore pipelines the internal pressure is assumed zero during installation. For offshore pipelines, the external pressure is assumed constant for installation and operation. For onshore pipelines external pressure should be ignored. The design factor should include all relevant factors (eg quality factor E and stress factor F etc).

Change Module :

Related Modules :

CALCULATOR MODULE : Pipeline Expansion Spool   ±
CALCULATOR MODULE : DNVGL ST F101 Submarine Pipeline Ovality   ±

Calculate DNVGL-ST-F101 submarine pipeline ovality from the out of roundness tolerance, or measured maximum and minimum diameter. Pipe ovalisation can be calculated from the initial ovality and the bending strain.

Reference : DNVGL-ST-F101 : Submarine Pipeline Systems (Download from the DNVGL website)

Change Module :

CALCULATOR MODULE : API RP 1111 Pipeline Combined Loading   ±

Calculate API RP 1111 limit state pipeline combined loading check.

For the external pressure check, the external pressure should be calcuated for the maximum water depth (highest astronomical tide plus storm surge). The internal pressure should be the maximum sustainable pressure (normally zero).

For the axial load check, the axial load can be calculated for either fully constrained pipeline, unconstrained pipeline, or user defined loads.

Reference : API RP 1111 : Design, Construction, Operation, and Maintenance of Offshore Hydrocarbon Pipelines (Limit State Design) (2011)

Change Module :

CALCULATOR MODULE : DNVGL RP F101 Pipeline Longitudinal Stress   ±

Calculate DNVGL RP F101 pipeline longitudinal stress from axial stress and bending stress.

The longitudinal stress is calculated from the nominal diameter and wall thickness. The axial stress can either be calculated from the pipeline temperature and pressure, or user defined.

Reference : DNVGL-RP-F101 : Corroded Pipelines (Download from the DNVGL website)

Change Module :