Pipeng Toolbox : Pipe Effective Axial Load Modules Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Pipeline Effective Axial Load Modules

Links : ±
CALCULATOR MODULE : Beam Lateral Vibration Frequency With Axial Load   ±

Calculate the damped and undamped beam natural vibration frequency for lateral vibration with axial load (simply supported, fixed, and cantilever beams).

For beams with axial load the axis with minimum stiffness (I1 or I2) should be used unless the beam is constrained to deflect on an alternative axis (buckling normally occurs on the minimum stiffness axis). Use the general beam calculators for cases where vibration and buckling are not parallel. The buckling load can be calculated using either the Euler equation (suitable for long beams), or the Johnson equation (suitable for short beams). The buckling load is dependent on the end type, and is used for mode 1 vibration only.

Added mass should be included for submerged or wet beams. The added mass coefficient can be calculated in accordance with DNVGL RP F105. The submerged natural frequency is calculated for still water conditions, with no vortex shedding. For beams on a soft foundation such as soil, use the effective length factor to allow for movement at the beam ends. For defined beam ends such as structures, the effective length factor should be set to one. For pipes the axial load is calculated from temperature and pressure. For general beams the axial load is user defined.

The mode factor k is dependent on the mode number, and the beam end type. The k factors have been taken from the Shock and Vibration handbook. The damping factor should be set to zero for undamped vibration or set greater than zero and less than or equal to one for damped vibration. For multi layer pipes the bending stiffness can be calculated with the concrete stiffness factor (CSF). The CSF accounts for the additional stiffness provided by the external concrete coating. The concrete stiffness factor is calculated in accordance with DNVGL RP F105. Enter the wall thickness for all layers. Only enter the elastic modulus for layers which affect the pipe stiffness.

Use the Result Table and Result Plot options to display tables and plots. Refer to the figures and help pages for more details about the tools.

References :

Shock And Vibration Handbook, Cyril M Harris, McGraw Hill
Roark's Formulas For Stress And Strain, Warren C Young, McGraw Hill

Change Module :

CALCULATOR MODULE : Beam Bending   ±

Calculate beam bending shear force, bending moment, slope and deflection for general beams using the Euler Bernoulli beam equation.

The Euler Bernoulli beam equation is suitable for slender beams (it does not include the effect of shear), and for small angles (θ < 0.5 rad). The calculations are not valid past the beam end points. For combined loads, the shear force, bending moment, slope and deflection are assumed to be additive. The beam end conditions are of the form left end - right end (for example Pin-Fix is left end pinned and right end fixed). All distances are measured from the left end of the beam.

Beam end types include: free fixed (cantilever), guided fixed, pinned fixed, fixed fixed (built in or fixed), pinned pinned (simply supported), and guided pinned beam ends.

Combined loads include axial loads, point loads, distributed loads, weight loads, concentrated moments, angular displacements, lateral displacements, and uniform temperature gradient.

For beams with compressive axial loads the bending moment, slope and deflection tend to infinity as the axial load tends to the buckling load. For tension loads, the bending moment, slope and deflection decrease with increasing tension. The buckling load can be calculated using either the Euler equation (suitable for long beams), the Johnson equation (suitable for short beams), or the buckling load equation can be determined from the transition length.

The effective length factor should be used for beams on a soft foundation such as soil, where the beam ends are poorly defined. For defined beam ends, such as structures, the effective length factor should be set to one (fe = 1).

Use the Result Plot option to plot the bending moment, shear force, slope, deflection and stress versus position x. Refer to the figures and help pages for more details. Refer to the links below for other beam options.

Reference : Roark's Formulas For Stress And Strain, Warren C Young, McGraw Hill

Change Module :

CALCULATOR MODULE : Pipe Beam Bending   ±

Calculate beam bending shear force, bending moment, slope and deflection for pipe beams using the Euler Bernoulli beam equation.

The Euler Bernoulli beam equation is suitable for slender beams (it does not include the effect of shear), and for small angles (θ < 0.5 rad). The calculations are not valid past the beam end points. For combined loads, the shear force, bending moment, slope and deflection are assumed to be additive. The beam end conditions are of the form left end - right end (for example Pin-Fix is left end pinned and right end fixed). All distances are measured from the left end of the beam.

Beam end types include: free fixed (cantilever), guided fixed, pinned fixed, fixed fixed (built in or fixed), pinned pinned (simply supported), and guided pinned beam ends.

Combined loads include axial loads, point loads, distributed loads, weight loads, concentrated moments, angular displacements, lateral displacements, and uniform temperature gradient.

For beams with compressive axial loads the bending moment, slope and deflection tend to infinity as the axial load tends to the buckling load. For tension loads, the bending moment, slope and deflection decrease with increasing tension. The buckling load can be calculated using either the Euler equation (suitable for long beams), the Johnson equation (suitable for short beams), or the buckling load equation can be determined from the transition length.

The effective length factor should be used for beams on a soft foundation such as soil, where the beam ends are poorly defined. For defined beam ends, such as structures, the effective length factor should be set to one (fe = 1).

For multi layer beams the concrete stiffness can be included in EI by multiplying EI by a factor (1 + CSF). The bending stress at the field joint should also be multiplied by the factor (1 + CSF) to account for stress localisation (select the pipe joint option for bending stiffness) . The concrete stiffness factor is calculated from the ratio of concrete EI over beam EI in accordance with DNVGL RP F105. The method is suitable for circular beams and pipes. For other profile shapes engineering judgement is required.

The stress check includes longitudinal stress, Tresca combined stress, and von Mises equivalent stress. The bending stress is calculated at the pipe mid wall. The hoop stress is calculated using the Barlow mid wall equation with the nominal wall thickness.

:

`Sh = (P - Pe) (OD - tn) / (2 tn) `

where :

Sh = hoop stress
P = internal pressure
Pe = external pressure
OD = pipe outside diameter
tn = pipe nominal thickness

Use the Result Plot option to plot the bending moment, shear force, slope, deflection and stress versus position x. Refer to the figures and help pages for more details.

Reference : Roark's Formulas For Stress And Strain, Warren C Young, McGraw Hill

Change Module :

CALCULATOR MODULE : Pipeline Axial Load   ±

Calculate pipeline global (or external) axial load, and pipe wall axial load from temperature and pressure.

Fully restrained axial load is due to the difference between installation temperature and pressure, and the operating temperature and pressure, and including residual installation loads. External pressure is assumed constant. Unrestrained load is due to the pipe end cap pressure force.

The axial load is calculated using the thick wall formula (API RP 1111 and DNV OS F101). For onshore and offshore pipelines the internal pressure is assumed zero during installation, and the external pressure is assumed constant for installation and operation. For piping the internal and external pressure are assumed zero during installation. The design factor should include all relevant factors (eg quality factor E and stress factor F etc).

Change Module :

CALCULATOR MODULE : DNVGL ST F101 Submarine Pipeline Axial Load   ±

Calculate DNVGL-ST-F101 submarine pipeline axial load from temperature and pressure. The axial load calculations are valid in the elastic range only (check that the equivalent stress is less than the yield stress). The calculators include a combined load controlled check, displacement controlled check, allowable stress design check (ASD), and an equivalent stress check (von Mises).

Reference : DNVGL-ST-F101 : Submarine Pipeline Systems (Download from the DNVGL website)

Change Module :

CALCULATOR MODULE : Hot Pipeline Soil Friction   ±
CALCULATOR MODULE : API RP 1111 Pipeline Axial Load   ±
CALCULATOR MODULE : API RP 1111 Pipeline Combined Loading   ±

Calculate API RP 1111 limit state pipeline combined loading check.

For the external pressure check, the external pressure should be calcuated for the maximum water depth (highest astronomical tide plus storm surge). The internal pressure should be the maximum sustainable pressure (normally zero).

For the axial load check, the axial load can be calculated for either fully constrained pipeline, unconstrained pipeline, or user defined loads.

Reference : API RP 1111 : Design, Construction, Operation, and Maintenance of Offshore Hydrocarbon Pipelines (Limit State Design) (2011)

Change Module :

CALCULATOR MODULE : DNVGL RP F101 Pipeline Longitudinal Stress   ±

Calculate DNVGL RP F101 pipeline longitudinal stress from axial stress and bending stress.

The longitudinal stress is calculated from the nominal diameter and wall thickness. The axial stress can either be calculated from the pipeline temperature and pressure, or user defined.

Reference : DNVGL-RP-F101 : Corroded Pipelines (Download from the DNVGL website)

Change Module :