Pipeng Toolbox : Pipe Flotation Modules Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Pipeline Flotation Modules

Links : ±
CALCULATOR MODULE : DNVGL ST F101 Submarine Pipeline Flotation   ±

Calculate DNVGL-ST-F101 submarine pipeline flotation and vertical stability.

Select either the empty pipe or full pipe option. For vertical stability, the pipe specific gravity should be greater than or equal to 1.1.

The number of pipe internal and external layers, and the names of the layers can be changed on the setup page. The first internal layer is the line pipe. The line pipe wall thickness can either be selected from the pipe schedule, or the input value is used as the user defined value.

Reference : DNVGL-ST-F101 : Submarine Pipeline Systems (Download from the DNVGL website)

Change Module :

CALCULATOR MODULE : DNVGL RP F109 Submarine Pipeline Stability   ±

Calculate DNVGL-RP-F109 pipeline lateral and vertical stability.

Static or absolute stability can be calculated for clay seabed, sandy seabed (D50 ≤ 50 mm), or rocky seabed (D50 > 50 mm). The single oscillation velocity corresponds to the maximum wave velocity in the return period. Maximum current velocity data should be used.

Dynamic stability can be calculated on clay and sandy seabeds for Lstable (pipe displacement ≤ 0.5 OOD), L10 (pipe displacement ≤ 0.5 OOD), or user defined pipe displacement. Significant current velocity data should be used.

Seabed wave velocity is calculated from the JONSWAP surface spectrum with an Airy wave transfer function. The calculation should only be used for elevations at or near the seabed. The Airy wave transform may not be valid in shallow water.

Reference : DNVGL-RP-F109 : On-Bottom Stability Design Of Submarine Pipelines (Download from the DNVGL website)

Change Module :