Links : ± |
CALCULATOR MODULE : ASME B31.3 Process Piping Fluid Velocity And Flow Rate ±
Calculate ASME B31.3 process piping fluid velocity and flow rate for two phase gas liquid piping, and three phase black oil piping (gas water and oil). The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet). Reference : ANSI/ASME B31.3 : Process Piping (2018) Change Module :
|
CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Fluid Velocity And Flow Rate ±
Calculate ASME B31.4 liquid pipeline fluid velocity and flow rate for two phase gas liquid piping, and three phase black oil piping (gas water and oil). The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet). Reference : ANSI/ASME B31.4 : Pipeline Transportation Systems For Liquids And Slurries (2012) Change Module :
|
CALCULATOR MODULE : ASME B31.8 Gas Pipeline Fluid Velocity And Flow Rate ±
Calculate ASME ASME B31.8 gas pipeline fluid velocity and flow rate for two phase gas liquid piping, and three phase black oil piping (gas water and oil). The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet). Reference : ANSI/ASME B31.8 : Gas Transmission And Distribution Piping Systems (2018) Change Module :
|
CALCULATOR MODULE : ASME B31.1 Power Piping Steam Mass And Flow Rate ±
Calculate ASME B31.1 power piping steam mass, velocity and flow rate from the steam table (IAPWS R7-97 Steam Table). Steam mass and volume can be calculated from steam temperature and pressure, and either steam mass, steam volume, or piping length. Steam flow rate and velocity can be calculated from steam temperature and pressure, and either steam mass flow rate, steam volume flow rate, or steam velocity. Steam properties can be calculated for water and steam, saturated water, saturated steam, saturated water and steam, metastable water, and metastable steam. The calculations for water and steam are valid between 273.15 K and 1073.15 K (0 to 100 MPa), and between 1073.15 K and 2273.15 K (0 to 50 MPa). The saturated water and steam calculations are valid between 273.15 K and 647.096 K. The metastable calculation is valid between 273.15 K and 647.096 K, and for pressure from the saturated vapour line to the 5% equilibium moisture line (user defined). Note : There is an anomaly in the steam calculation for region 3 between the saturated vapour line, the regions 2/3 boundary, and the critical pressure. Refer to the region 3 anomaly help page for more details (click the utility button on the data bar). Reference : ANSI/ASME B31.1 : Power Piping (2014) Change Module :
|
CALCULATOR MODULE : ASME B31.5 Refrigeration Piping Fluid Velocity And Flow Rate ±
Calculate ASME B31.5 refrigeration piping fluid velocity and flow rate for two phase gas and liquid. The two phase gas liquid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet). Reference : ANSI/ASME B31.5 : Refrigeration Piping And Heat Transfer Components (2013) Change Module : Related Modules :
|
CALCULATOR MODULE : Pipeline Fluid Velocity And Flowrate ±
Calculate pipeline fluid velocity, density and flowrate for two phase gas liquid, three phase gas oil and water (black oil), single phase gas, and single phase liquid. Two phase gas liquid density is calculated from the gas oil ratio (GOR). Three phase black oil density is calculated from the gas oil ratio (GOR), and water cut (WC). Single phase gas density is calculated from temperature, pressure, specific gravity (relative to air), and compressibility factor. Single phase liquid density can be calcuated from specific gravity, degrees Baume (Be+), degrees Baume (Be-), degrees API, or degrees Twaddell. Change Module :
|
CALCULATOR MODULE : DNVGL ST F101 Submarine Pipeline Fluid Velocity And Flowrate ±
Calculate DNVGL-ST-F101 subsea pipeline fluid velocity and flowrate for two phase gas and liquid, and three phase oil, water and gas (black oil). The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet). Reference : DNVGL-ST-F101 : Submarine Pipeline Systems (Download from the DNVGL website) Change Module :
|
CALCULATOR MODULE : API RP 1111 Pipeline Fluid Velocity And Flow Rate ±
Calculate API RP 1111 limit state pipeline fluid velocity and flow rate for two phase gas liquid piping, and three phase black oil piping (gas water and oil). The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet). Reference : API RP 1111 : Design, Construction, Operation, and Maintenance of Offshore Hydrocarbon Pipelines (Limit State Design) (2011) Change Module :
|
CALCULATOR MODULE : AS 2885.1 Pipeline Fluid Velocity And Flow Rate ±
Calculate AS 2885.1 pipeline fluid velocity and flow rate for two phase gas liquid piping, and three phase black oil piping (gas water and oil). The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet). Reference : Australian Standard AS 2885.1 : Pipelines - Gas And Liquid Petroleum Part 1 : Design And Construction (2015) Change Module :
|
CALCULATOR MODULE : Piping Fitting Minor Loss Factor ±
Calculate pipe fitting minor loss factors. Minor loss factors can be defined as: - Av (SI) flow coefficient - the flow in cubic meters per second fluid density 1 kilogram per cubic meter which gives a pressure drop of 1 Pa
- Cv-uk (UK) flow coefficient - the flow in UK gallons per minute of water at 60 degrees F which gives a pressure drop of 1 psi
- Cv-us (US) flow coefficient - the flow in US gallons per minute of water at 60 degrees F which gives a pressure drop of 1 psi
- Cv-met (Metric) flow coefficient - the flow in liters per minute of water at 16 degrees C which gives a pressure drop of 1 bar
- Kv (EU) flow coefficient - the flow in cubic meters per hour of water at 16 degrees C which gives a pressure drop of 1 bar
- Cv* the dimensionless US flow factor = Cv-us / din^2 (din is the inside diameter in inches)
- K factor - the ratio of pressure loss over the dynamic pressure
- Cd or discharge coefficient - the ratio of the actual flow rate of the fluid through the fitting over the frictionless flow rate.
The K factor and discharge coefficient are dimensionless and can be used with any consistent set of units. The dimensionless flow coefficient has inconsistent units, and is unit specific. The flow coefficient Av, Cv-us, Cv-uk, Cv-met and Kv have dimensions length squared, and can not be used interchangeably between different systems of units. Note : The friction factor K, discharge coefficient Cd, dimensionless flow coefficient Cv*, and flow coefficients Av, Cv-uk, Cv-us, Cv-met and Kv are used in different situations. The discharge coefficient is usually used for discharge through an orifice, but can also be used in other situations (for example pressure relief valves). The flow coefficients Av, Cv-uk, Cv-us, Cv-met and Kv, and the dimensionless flow coefficient Cv* are usually used for valves, but can also be used for other fittings. Engineering judgement is required to determine the correct minor loss factor to use. Change Module : Related Modules :
|
CALCULATOR MODULE : Piping Fitting Pressure Loss ±
Calculate outlet pressure and pressure loss through piping and fittings. The pressure loss is calculated from the Moody diagram using the Darcy-Weisbach friction factor. The Darcy friction factor can be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White turbulent flow equation, or the modified Colebrook White equation. Changes in elevation are ignored. For liquid piping with fittings the outlet pressure is calculated by: `Po = P - 8 (fL/D+ΣK) ρ (Q^2) / (pi^2D^4) ` `ΔP = P - Po ` where : ΔP = pressure loss P =inlet pressure Po = outlet pressure Po = outlet pressure ρ = fluid density Q= fluid volume flowrate f = Darcy friction factor L = pipe length D = pipe inside diameter Σ K = total fitting K factor For gas piping with fittings the outlet pressure is calculated by: `Po = √(P^2 - 16m^2(fd.L / D + ΣK) (mma.SG.ZRoT)/(pi^2D^4) ) ` where : m = gas mole flowrate mma = air molar mass SG = gas specific gravity Z = gas compressibility factor Ro = universal gas constant T = gas temperature For liquid fittings the outlet pressure is calculated by: `Po = P - 8 K ρ (Q^2) / (pi^2D^4) ` where : K = fitting K factor For gas fittings the outlet pressure is calculated by: `Po = √(P^2 - m^2K (16mma.SG.ZRoT)/(pi^2D^4) ) ` Change Module : Related Modules :
|
CALCULATOR MODULE : Liquid Pipeline Pressure Loss From The Darcy Weisbach Equation ±
Calculate single phase liquid pipeline pressure loss using the Darcy Weisbach equation. `Po = P - (fd L / (ID) + K) 1/2 ρ V^2 + ρ g (zi - zo) ` where : Po = outlet pressure P = inlet pressure fd = Darcy friction factor L = piping length ID = piping inside diameter K = total friction loss factor for fittings ρ = fluid density V = fluid velocity g = gravity constant zi = inlet elevation zo = outlet elevation The Darcy friction factor can be calculated for - Hagen-Poiseuille laminar flow equation
- original Colebrook White equation
- modified Colebrook White equation
- Prandtl Nikuradse smooth pipe equation
- Blasius smooth pipe equation
- Colebrook smooth pipe equation
- Miller smooth pipe equation
- Konakov smooth pipe equation
- Von Karman rough pipe equation
For low Reynolds numbers Re < 2000, the fluid flow is laminar and the Darcy friction factor should be calculated using the Hagen-Poiseuille laminar flow equation. For high Reynolds numbers Re > 4000, the fluid flow is turbulent and the Darcy friction factor should be calculated using one of the turbulent flow equations. In the transition region 2000 < Re < 4000, the flow is unstable and the friction loss cannot be reliably calculated. The minor loss K factor is used to account for pipeline fittings such as bends, tees, valves etc.. The calculators use the Darcy-Weisbach pressure loss equation. The Fanning friction factor is used with the Fanning pressure loss equation. The transmission factors are commonly used for gas flow. The results for the Darcy and Fanning equations are identical provided that the correct friction factor is used. Change Module : Related Modules :
|
CALCULATOR MODULE : Liquid Pipeline Chemical Dose Rate ±
Calculate single phase liquid pipeline, liquid chemical dose volume fraction, mass fraction, volume ratio, mass ratio, and average fluid density. `Xv = (Vd) / (Vf) ` `Mv = (Md) / (Mf) ` `Rv = 1 : (Xl) / (Xd) = 1 : (1/(Xv) - 1) ` `Rm = 1 : (Ml) / (Md) = 1 : (1/(Xm) - 1) ` `Vf = Vd + Vl ` `Mf = Md + Ml ` `ρf = Xv. ρd + (1-Xv) ρl ` where : Xv = dose volume fraction Mv = dose mass fraction Rv = dose volume ratio (1 : liquid volume / dose volume rounded) Rm = dose mass ratio (1 : liquid mass / dose mass rounded) Vf = total fluid volume Vd = dose volume Vl = liquid volume (before dosing) Mf = total fluid mass Md = dose mass Ml = liquid mass (before dosing) ρf = average fluid density (dosed) ρd = dose chemical density ρl = liquid density (before dosing) The average fluid density includes the dosing chemical (combined undosed liquid and dose chemical). The volume of mixing is assumed to be equal to the sum of the individual volumes. The dose amount can be calculated from either the liquid volume (before dosing), or the total fluid volume. he dose rate can be calculated from either the liquid flowrate (before dosing), or the total fluid flowrate. Change Module : Related Modules :
|
CALCULATOR MODULE : Water Open Channel Or Culvert Flow Rate From The Manning Equation ±
Calculate flowrate in circular or rectangular water channels using the Manning equation. `Q = A (rh^2)/3 s^(1/2) / n ` `rh = A/P ` where : Q = flow rate A = cross section area P = wetted perimeter rh = hydraulic radius s = channel slope n = Manning friction factor The channel is assumed to be either open, or partly full and at ambient pressure. The head loss equals the change in elevation. Channel roughness is accounted for using the Manning friction factor. The hydraulic radius is the ratio of channel cross section area over the wetted perimeter. Valves, tees and other pipe fittings should be included by adding a minor loss equivalent length to the pipeline length. Change Module : Related Modules :
|
CALCULATOR MODULE : Liquid Pipeline Fluid Velocity And Flow Rate ±
Calculate single phase liquid pipeline fluid velocity and flow rate. Fluid flowrate can be specified by volume flowrate, mass flowrate, or velocity. Fluid density can be defined by density, specific gravity, degrees Baume, degrees Twaddell, or degrees API. For liquids lighter than or equal to water the density can be defined as degrees API, or degrees Baume (Be-). For liquids heavier than water the density can be defined by degrees Baume (Be+), or degrees Twaddell. Change Module : Related Modules :
|
CALCULATOR MODULE : Gas Pipeline Pressure Loss From The Darcy Weisbach Equation ±
Calculate single phase gas pipeline pressure loss using the Darcy Weisbach equation. `Po = √(P^2 - m^2(fd.L / D + K) ls (16mma.SG.ZRoT)/(pi^2D^4) ) / (es) ` `ss = (z2 - z2) SG.mma.g / (Ro T Z) ` `es = e^(ss) ` `ls = (es^2 - 1) / (ss) ` where : Po = outlet pressure P = inlet pressure fd = Darcy friction factor L = piping length D = piping inside diameter K = total friction loss factor for fittings m = gas mole flowrategas mma = air molar mass SG = gas specific gravity Z = gas compressibility factor Ro = universal gas constant T = gas temperature g = gravity constant zi = inlet elevation zo = outlet elevation ss = elevation exponent es = elevation pressure factor ls = elevation length factor For low Reynolds numbers Re < 2000, the fluid flow is laminar and the Darcy friction factor should be calculated using the Hagen-Poiseuille laminar flow equation. For high Reynolds numbers Re > 4000, the fluid flow is turbulent and the Darcy friction factor should be calculated using one of the turbulent flow equations. In the transition region 2000 < Re < 4000, the flow is unstable and the friction loss cannot be reliably calculated. The minor loss K factor is used to account for pipeline fittings such as bends, tees, valves etc.. The calculators use the Darcy-Weisbach pressure loss equation with the Darcy friction factor. The Fanning transmission factor combined with the Fanning equation is commonly used for gas flow. The results for the Darcy and Fanning equations are identical provided that the correct friction factor is used. The gas specific gravity is the ratio of gas density over the density of dry air at base temperature and pressure. The compressibility factor is assumed to equal 1 at the base conditions. The gas specific gravity is proportional to the gas molar mass. Change Module : Related Modules :
|
CALCULATOR MODULE : Gas Pipeline Chemical Dose Rate ±
Calculate single phase gas pipeline, liquid chemical dose volume fraction, mass fraction, dose volume over gas mole ratio, dose mass over gas mole ratio, and average fluid density. `Xv = (Vd) / (Vf) ` `Mv = (Md) / (Mf) ` `Rv = (Vg.Xv) / (1 - Xv) ` `Rm = Rv.ρd ` `Vf = Vd + Vg ` `Mf = Md + Mg ` `ρf = Xv.ρd + (1-Xv) ρg ` `Vg = (m Z Ro T) / P ` where : Xv = dose volume fraction Mv = dose mass fraction Rv = dose volume ratio (dose volume:liquid volume) Rm = dose mass ratio (dose mass:liquid mass) Vf = total fluid volume Vd = dose volume Vg = gas volume (before dosing) Mf = total fluid mass Md = dose mass Mg = gas mass (before dosing) Vg = gas volume m = gas moles P = gas pressure T = gas temperature ρf = average fluid density (dosed) ρd = dose chemical density ρg= gas density (before dosing) The average fluid density includes the dosing chemical (combined undosed liquid and dose chemical). The dose chemical is assumed to remain in the liquid phase. The dose quantity can be calculated from either the gas quantity (before dosing), or the total fluid quantity (after dosing). The dose rate can be calculated from either the gas flowrate (before dosing), or the total fluid flowrate: Change Module : Related Modules :
|
CALCULATOR MODULE : Gas Pipeline Fluid Velocity And Flow Rate ±
Calculate single phase gas pipeline fluid flowrate and velocity. Fluid density can be calculated from temperature and pressure using the ideal gas equation. Gas compressibility can be calculated from critical point data. Fluid flowrate can be calculated from either volume flowrate, mass flowrate, mole flowrate, or velocity. Change Module : Related Modules :
|
CALCULATOR MODULE : API RP 14E Maximum Erosional Velocity ±
Calculate API RP 14E maximum allowable erosional velocity for platform piping systems. The fluid density can be calculated for single phase gas, single phase liquid, two phase gas liquid, or three phase black oil (gas oil and water). The erosional velocity is calculated from the fluid density and the C Factor. Equation 2.14 in API RP 14E uses FPS units. The API RP 14E calculators have been factored to use SI units. For fluids with no entrained solids a maximum C value of 100 for continuous service, or 125 for intermittent service can be used. For fluids treated with corrosion inhibitor, or for corrosion resistant materials a maximum C value of 150 to 200 may be used for continuous service, and upto 250 for intermittent service. For fluids with solids, the C value should be significantly reduced. Gas oil ratio (GOR) is the ratio of gas moles over oil volume. Gas moles are commonly measured as gas volume at standard conditions (eg SCF or SCM). Water cut is the volume ratio of water in liquid (oil and water). Reference : API 14E Recommended Practice For Design and Installation of Offshore Production Platform Piping Systems Change Module : Related Modules :
|
CALCULATOR MODULE : Pipeline Flow Rate ±
Calculate fluid flow rate for single phase liquids, single phase gases, and two phase fluids. Fluid flow rate can be measured by volume flow rate, mass flow rate, mole flow rate, and velocity. Related Modules :
|
CALCULATOR MODULE : Compressible Flow Pressure Relief Vent ±
Calculate compressible flow pressure relief vent flow rate and pressure drop for either adiabatic or isothermal flow. The vent is modelled as a frictionless entry, combined with a frictional constant diameter duct. For adiabatic flow the vent entry is assumed to be isentropic. For isothermal flow, the vent entry is assumed to be isothermal. The vent entry is assumed to be subsonic at all conditions. The pipeline is assumed to be at stagnation conditions (M = 0). At high pressure the vent exit flow is critical flow (Mc = 1 for adiabatic low and `Mc = 1 / (√γ)` for isothermal flow : γ = the gas specific heat ratio). At lower pressures the vent exit flow is sub critical (M < Mc). Vent flow rate is calculated from the vent pressure loss factor (fld). `fld = fd L/D + K ` where : fld = vent pressure loss factor fd = Darcy friction factor L = vent length D = vent inside diameter K = minor loss K factor The Darcy friction factor is calculated assuming fully turbulent flow. Minor losses should include the vent entry, and valves, bends etc.. The vent exit should not be included (the fluid dynamic pressure is included in the calculation). The discharge coefficient can be used as a safety factor. Note : The vent calculation is not suitable for pressure relief headers which are part of a pressure relief valve (PRV) system. Use the Result Plot option to plot inlet and exit pressure versus stagnation pressure, inlet and exit mach number versus stagnation pressure, or mass flow rate versus stagnation pressure and flow type. Reference : Fluid Mechanics, Frank M White, McGraw Hill Change Module : Related Modules :
|
CALCULATOR MODULE : DNVGL RP O501 Erosion Rate ±
Calculate DNVGL-RP-O501 pipeline inside diameter and internal cross section area from pipe diameter and wall thickness schedule. Use the Result Table option to display the table results versus wall thickness for the selected pipe schedule diameter. Reference : DNVGL-RP-O501 Managing Sand Production And Erosion : formerly DNV-RP-O501 (Download from the DNVGL website) Change Module : Related Modules :
|
CALCULATOR MODULE : DNVGL RP O501 Pipeline Erosion Rate ±
Calculate DNVGL-RP-O501 piping erosion rate and pipe weld erosion rate from fluid velocity and sand rate. The erosion rate calculations for straight pipes and welded joints are calibrated for carbon steel pipes. The calculators include options for other materials from table 3-1. These materials are not covered by the code (use the options carefully). Reference : DNVGL-RP-O501 Managing Sand Production And Erosion : formerly DNV-RP-O501 (Download from the DNVGL website) Change Module : Related Modules :
|
CALCULATOR MODULE : DNVGL RP O501 Pipeline Bend Erosion Rate ±
Calculate DNVGL-RP-O501 erosion rate in pipe bends from fluid velocity and sand rate. Reference : DNVGL-RP-O501 Managing Sand Production And Erosion : formerly DNV-RP-O501 (Download from the DNVGL website) Change Module : Related Modules :
|
CALCULATOR MODULE : DNVGL RP O501 Pipeline Tee Erosion Rate ±
Calculate DNVGL-RP-O501 erosion rate in pipe blind tees from fluid velocity and sand rate. Reference : DNVGL-RP-O501 Managing Sand Production And Erosion : formerly DNV-RP-O501 (Download from the DNVGL website) Change Module : Related Modules :
|
CALCULATOR MODULE : DNVGL RP O501 Pipeline Reducer Erosion Rate ±
Calculate DNVGL-RP-O501 erosion rate in pipe reducers from fluid velocity and sand rate. Reference : DNVGL-RP-O501 Managing Sand Production And Erosion : formerly DNV-RP-O501 (Download from the DNVGL website) Change Module : Related Modules :
|
CALCULATOR MODULE : DNVGL RP O501 Flexible Pipeline Erosion Rate ±
Calculate DNVGL-RP-O501 erosion rate in flexible pipe from fluid velocity and sand rate. Reference : DNVGL-RP-O501 Managing Sand Production And Erosion : formerly DNV-RP-O501 (Download from the DNVGL website) Change Module : Related Modules :
|
CALCULATOR MODULE : DNVGL RP F115 Pipeline Leak Rate ±
Calculate DNVGL RP-F115 pipeline leak rate and estimated pinhole diameter from pressure drop per hour. Reference : DNVGL-RP-F115 Pre-commissioning of Submarine Pipelines (Download from the DNVGL website) Change Module : Related Modules :
|
CALCULATOR MODULE : DNVGL RP F115 Pipeline Chemical Dose Rate ±
Calculate DNVGL RP-F115 pipeline chemical dose rate for hydro tests and pneumatic tests. Reference : DNVGL-RP-F115 Pre-commissioning of Submarine Pipelines (Download from the DNVGL website) Change Module : Related Modules :
|
CALCULATOR MODULE : Two Phase Gas Liquid Viscosity ±
Calculate dynamic and kinematic viscosity for two phase gas liquids (gas and oil or gas and liquid). Kinematic viscosity is equal to the dynamic viscosity divided by the density of the fluid. The viscosity of two phase fluids and mixtures can be calculated from the dynamic viscosity and the volume fraction. The gas oil ratio is the ratio of gas moles to oil volume. It is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters). Change Module : Related Modules :
|
CALCULATOR MODULE : Three Phase Gas Oil Water (Black Oil) Viscosity ±
Calculate dynamic and kinematic viscosity for three phase black oil (gas oil and water). Kinematic viscosity is equal to the dynamic viscosity divided by the density of the fluid. The viscosity of two phase fluids and mixtures can be calculated from the dynamic viscosity and the volume fraction. The gas oil ratio is the ratio of gas moles to oil volume. The gas mass fraction is the ratio of gas mass to total fluid mass. The gas volume fraction is the ratio of gas volume to total fluid volume. Water cut is the ratio of water volume over total liquid volume (equals the water volume fraction in the liquid). Gas volume is dependent on fluid temperature and pressure. Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters). Change Module : Related Modules :
|
CALCULATOR MODULE : Two Phase Gas Liquid Density ±
Calculate fluid density for two phase fluid (oil and gas, or gas and water). The gas oil ratio is the ratio of gas moles to oil volume. The gas mass fraction is the ratio of gas mass to total fluid mass. The gas volume fraction is the ratio of gas volume to total fluid volume. Gas volume is dependent on fluid temperature and pressure. Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters). Change Module : Related Modules :
|
CALCULATOR MODULE : Three Phase Gas Oil Water (Black Oil) Density ±
Calculate fluid density for three phase black oil (oil, water and gas). The gas oil ratio is the ratio of gas moles to oil volume. The gas mass fraction is the ratio of gas mass to total fluid mass. The gas volume fraction is the ratio of gas volume to total fluid volume. Water cut is the ratio of water volume over total liquid volume (equals the water volume fraction in the liquid). Gas volume is dependent on fluid temperature and pressure. Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters). Change Module : Related Modules :
|
CALCULATOR MODULE : Two Phase Gas Liquid Heat Capacity ±
Calculate two phase gas liquid heat capacity. Fluid heat capacity can be calculated for single phase phase liqui. single phase gas, or combined liquid and gas. Gas oil ratio (GOR) is the ratio of gas moles over liquid volume. Gas moles are commonly measured by standard cubic feet (scf), and stand cubic meters (scm). Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters). Change Module : Related Modules :
|
CALCULATOR MODULE : Three Phase Gas Oil Water (Black Oil) Heat Capacity ±
Calculate three phase gas oil water (black oil) heat capacity. Black oil is a three phase mixture of oil, water and gas. Water cut is measured relative to the total liquid volume (gas volume is ignored). Gas oil ratio (GOR) is measured relative to the oil volume at standard conditions (water volume is ignored). Gas oil ratio (GOR) is the ratio of gas moles over liquid volume. Gas moles are commonly measured by standard cubic feet (scf), and stand cubic meters (scm). Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters). Change Module : Related Modules :
|
CALCULATOR MODULE : IAPWS R7-97 Steam Volume And Mass Flow Rate ±
Calculate IAPWS R7-97 steam table properties, and steam power from temperature, pressure and mass flow rate. Steam table properties can be calculated for water and steam, saturated water, saturated steam, saturated water and steam, metastable water, and metastable steam. The enthalpy rate and internal energy rate (or power) are calculated from the mass flow rate. Note : There is an anomaly in the steam calculation for region 3 between the saturated vapour line, the region 2/3 boundary, and the critical pressure. Refer to the region 3 anomaly help page for more details (click the utility button on the data bar). IAPWS R7-97 is intended for industrial use, and is a simplified version of IAPWS R6-95 for scientific use. IAPWS R7-97 was developed as an improvement of the IFC-67 model. Reference : IAPWS R7-97 Industrial Formulation for thermodynamic Properties of Water and Steam Change Module :
|