Pipeng Toolbox : High Temperature Pipe Modules Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

High Temperature Pipeline Modules

Links : ±
CALCULATOR MODULE : ASME B31.3 Process Piping Wall Thickness   ±

Calculate ASME B31.3 process piping wall thickness from temperature for low pressure steel pipe (Table A-1), high pressure steel pipe (Table K-1), and plastic piping.

Allowable stress for steel pipe is calculated from Table A-1 and Table K-1 US values (US units govern). Change units on the setup page. Stress values can be extrapolated for temperatures above the data range (care is required when using extrapolated values). The wall thickness calculations are valid for internal overpressure only. For combined internal and external pressure use the pressure difference in the calculations.

Use the Data Plot option to plot the allowable stress versus temperature for the selected material. Use the Data Table option to display the data table in the popup window (Table A-1, or Table K-1). Use the Result Table option to display a table of wall thickness and allowable pressure versus material type (for the calculate wall thickness option the allowable pressure equals the design pressure. for the specified wall thickness option the wall thickness equals the specified wall thickness). Refer to the help pages for notes on the data tables. Change units on the setup page. Use the workbook ASME B31.3 data tables to look up allowable stress data.

Note : The choice of high pressure versus low pressure service is at the discretion of the owner (section FK300). The ASME B16.5 Class 2500 pressure temperature rating for the material group is often used as a criteria.

Reference : ANSI/ASME B31.3 : Process Piping (2018)

Change Module :

CALCULATOR MODULE : High Temperature High Pressure (HTHP) Pipeline Line Pipe Schedule   ±
CALCULATOR MODULE : Hot Pipeline Temperature Decay Curve   ±
CALCULATOR MODULE : Hot Pipeline End Expansion   ±
CALCULATOR MODULE : Hot Pipeline Hobbs Lateral And Upheaval Buckling   ±
CALCULATOR MODULE : Hot Pipeline Upheaval Buckling   ±

Calculate high temperature pipeline upheaval buckling using either the Hobbs method, the Pipeng method, or the LRSTAR method.

The Hobbs method can be used for used for pipelines lying on the seabed. The LRSTAR and Pipeng methods are suitable for buried pipelines, and have been developed using the results from finite element analysis (FEA). The LRSTAR method uses a cubic spline fit for the dimensionless Richards length number and Richards weight number. The Pipeng method uses a simple mathematical relationship between the Calladine Length number and the Calladine load number based on beam theory.

The Hobbs method calculates the initiation temperature from the global axial load, the load outside the slip zone, and hence accounts for the expansion of the pipe prior to buckling. The Pipeng method and LRSTAR method calculate the initiation temperature from the axial load in the buckle, and do not account for the expansion of the pipe prior to buckling. The Pipeng method and LRSTAR method are therefore slightly conservative. In addition, the LRSTAR method includes a built in design factor. The LRSTAR method is therefore more conservative than the Pipeng method.

Change Module :

CALCULATOR MODULE : Hot Pipeline Lateral Buckling   ±
CALCULATOR MODULE : Hot Pipeline Upheaval Buckling Trigger   ±

Calculate high temperature pipeline upheaval buckling trigger height using Hobbs method.

Upheaval buckling triggers are used to initiate controlled buckling of high temperature high pressure pipelines. The trigger height should be designed so that the upheaval buckling initiation temperature is lower than the lateral buckling initiation temperature for all four lateral buckling modes. The triggers should be spaced according to the buckle initiation slip length. Use the Result Plot option to display the buckle initiation temperature versus either lateral out of straightness or trigger height, and use the goal seek option to calculate the required trigger height.

Change Module :

CALCULATOR MODULE : Hot Pipeline Walking   ±
CALCULATOR MODULE : Hot Pipeline Soil Weight   ±
CALCULATOR MODULE : Hot Pipeline Soil Friction   ±
CALCULATOR MODULE : Hot Pipeline Uplift Resistance   ±
CALCULATOR MODULE : Hot Pipeline Prop   ±
DATA MODULE : ASME B31.1 Power Piping Allowable Stress ( Open In Popup Workbook )   ±