Pipeng Toolbox : Pipe Volume Modules Blank User
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Demo

Pipeline Volume And Mass Modules

Links : ±
CALCULATOR MODULE : Line Pipe Fluid Mass And Volume   ±
CALCULATOR MODULE : ASME B31.3 Process Piping Fluid Volume And Mass   ±

Calculate ASME B31.3 process piping fluid density, fluid volume and fluid mass for two phase gas liquid piping, and three phase black oil piping (gas water and oil).

The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet).

Reference : ANSI/ASME B31.3 : Process Piping (2018)

Change Module :

CALCULATOR MODULE : ASME B31.4 Liquid Pipeline Fluid Volume And Mass   ±

Calculate ASME B31.4 liquid pipeline fluid density, fluid volume and fluid mass for two phase gas liquid pipelines, and three phase black oil pipelines (gas water and oil).

The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet).

Reference : ANSI/ASME B31.4 : Pipeline Transportation Systems For Liquids And Slurries (2012)

Change Module :

CALCULATOR MODULE : ASME B31.8 Gas Pipeline Fluid Volume And Mass   ±

Calculate ASME B31.8 gas pipeline fluid density, fluid volume and fluid mass for two phase gas liquid piping, and three phase black oil piping (gas water and oil).

The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet).

Reference : ANSI/ASME B31.8 : Gas Transmission And Distribution Piping Systems (2018)

Change Module :

CALCULATOR MODULE : ASME B31.5 Refrigeration Piping Fluid Volume And Mass   ±

Calculate ASME B31.5 refrigeration piping fluid volume and mass for two phase gas and liquid.

The two phase gas liquid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet).

Reference : ANSI/ASME B31.5 : Refrigeration Piping And Heat Transfer Components (2013)

Change Module :

Related Modules :

CALCULATOR MODULE : Pipeline Fluid Volume And Mass   ±

Calculate pipeline fluid volume, density and mass for two phase gas liquid, three phase gas oil and water (black oil), single phase gas, and single phase liquid.

Two phase gas liquid density is calculated from the gas oil ratio (GOR). Three phase black oil density is calculated from the gas oil ratio (GOR), and water cut (WC). Single phase gas density is calculated from temperature, pressure, specific gravity (relative to air), and compressibility factor. Single phase liquid density can be calcuated from specific gravity, degrees Baume (Be+), degrees Baume (Be-), degrees API, or degrees Twaddell.

Change Module :

CALCULATOR MODULE : DNVGL ST F101 Submarine Pipeline Fluid Mass And Volume   ±

Calculate DNVGL-ST-F101 subsea pipeline fluid volume and mass for two phase gas and liquid, and three phase oil, water and gas (black oil).

The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet).

Reference : DNVGL-ST-F101 : Submarine Pipeline Systems (Download from the DNVGL website)

Change Module :

CALCULATOR MODULE : API RP 1111 Pipeline Fluid Volume And Mass   ±

Calculate API RP 1111 limit state pipeline fluid volume and fluid mass for two phase gas liquid piping, and three phase black oil piping (gas water and oil).

The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet).

Reference : API RP 1111 : Design, Construction, Operation, and Maintenance of Offshore Hydrocarbon Pipelines (Limit State Design) (2011)

Change Module :

CALCULATOR MODULE : AS 2885.1 Pipeline Fluid Volume And Mass   ±

Calculate AS 2885.1 pipeline fluid volume and fluid mass for two phase gas liquid piping, and three phase black oil piping (gas water and oil).

The two phase fluid calculator can be used for single phase gas, single phase liquid, or two phase gas and liquid. The three phase black oil calculator can be used for single phase oil, single phase water, two phase oil and water, and three phase oil, water and gas. Water cut is the volume fraction of water in the liquid phase (ignoring the gas phase). Gas oil ratio (GOR) is the ratio of gas moles to liquid volume (ignoring the water phase). Gas moles are commonly measured as gas volume at standard conditions, eg SCM (Standard Conditions Meter) or SCF (Standard Conditions Feet).

Reference : Australian Standard AS 2885.1 : Pipelines - Gas And Liquid Petroleum Part 1 : Design And Construction (2015)

Change Module :

CALCULATOR MODULE : Liquid Pipeline Pressure Loss From The Darcy Weisbach Equation   ±

Calculate single phase liquid pipeline pressure loss using the Darcy Weisbach equation.

`Po = P - (fd L / (ID) + K) 1/2 ρ V^2 + ρ g (zi - zo) `

where :

Po = outlet pressure
P = inlet pressure
fd = Darcy friction factor
L = piping length
ID = piping inside diameter
K = total friction loss factor for fittings
ρ = fluid density
V = fluid velocity
g = gravity constant
zi = inlet elevation
zo = outlet elevation

The Darcy friction factor can be calculated for

  • Hagen-Poiseuille laminar flow equation
  • original Colebrook White equation
  • modified Colebrook White equation
  • Prandtl Nikuradse smooth pipe equation
  • Blasius smooth pipe equation
  • Colebrook smooth pipe equation
  • Miller smooth pipe equation
  • Konakov smooth pipe equation
  • Von Karman rough pipe equation

For low Reynolds numbers Re < 2000, the fluid flow is laminar and the Darcy friction factor should be calculated using the Hagen-Poiseuille laminar flow equation. For high Reynolds numbers Re > 4000, the fluid flow is turbulent and the Darcy friction factor should be calculated using one of the turbulent flow equations. In the transition region 2000 < Re < 4000, the flow is unstable and the friction loss cannot be reliably calculated. The minor loss K factor is used to account for pipeline fittings such as bends, tees, valves etc..

The calculators use the Darcy-Weisbach pressure loss equation. The Fanning friction factor is used with the Fanning pressure loss equation. The transmission factors are commonly used for gas flow. The results for the Darcy and Fanning equations are identical provided that the correct friction factor is used.

Change Module :

Related Modules :

CALCULATOR MODULE : Liquid Pipeline Fluid Mass And Volume   ±

Calculate single phase liquid pipeline fluid mass and volume from fluid density and pipe length.

Pipe volume can be specified by volume, mass, or pipe length. Fluid density can be defined by density, specific gravity, degrees Baume, degrees Twaddell, or degrees API. For liquids lighter than or equal to water the density can be defined as degrees API, or degrees Baume (Be-). For liquids heavier than water the density can be defined by degrees Baume (Be+), or degrees Twaddell.

Change Module :

Related Modules :

CALCULATOR MODULE : Gas Pipeline Pressure Loss From The Darcy Weisbach Equation   ±

Calculate single phase gas pipeline pressure loss using the Darcy Weisbach equation.

`Po = √(P^2 - m^2(fd.L / D + K) ls (16mma.SG.ZRoT)/(pi^2D^4) ) / (es) `
`ss = (z2 - z2) SG.mma.g / (Ro T Z) `
`es = e^(ss) `
`ls = (es^2 - 1) / (ss) `

where :

Po = outlet pressure
P = inlet pressure
fd = Darcy friction factor
L = piping length
D = piping inside diameter
K = total friction loss factor for fittings
m = gas mole flowrategas
mma = air molar mass
SG = gas specific gravity
Z = gas compressibility factor
Ro = universal gas constant
T = gas temperature
g = gravity constant
zi = inlet elevation
zo = outlet elevation
ss = elevation exponent
es = elevation pressure factor
ls = elevation length factor

For low Reynolds numbers Re < 2000, the fluid flow is laminar and the Darcy friction factor should be calculated using the Hagen-Poiseuille laminar flow equation. For high Reynolds numbers Re > 4000, the fluid flow is turbulent and the Darcy friction factor should be calculated using one of the turbulent flow equations. In the transition region 2000 < Re < 4000, the flow is unstable and the friction loss cannot be reliably calculated. The minor loss K factor is used to account for pipeline fittings such as bends, tees, valves etc..

The calculators use the Darcy-Weisbach pressure loss equation with the Darcy friction factor. The Fanning transmission factor combined with the Fanning equation is commonly used for gas flow. The results for the Darcy and Fanning equations are identical provided that the correct friction factor is used.

The gas specific gravity is the ratio of gas density over the density of dry air at base temperature and pressure. The compressibility factor is assumed to equal 1 at the base conditions. The gas specific gravity is proportional to the gas molar mass.

Change Module :

Related Modules :

CALCULATOR MODULE : Gas Pipeline Line Pack   ±
CALCULATOR MODULE : Gas Pipeline Fluid Mass And Volume   ±

Calculate single phase gas pipeline fluid mass and volume.

Fluid mass and volume can be calculated from fluid volume, fluid mass, or pipeline length. Gas density is calculated from temperature and pressure. The gas specific gravity is the ratio of gas density over the density of dry air at base temperature and pressure. The compressibility factor is assumed to equal 1 at the base conditions. The gas specific gravity is proportional to the gas molar mass.

Change Module :

Related Modules :

CALCULATOR MODULE : DNVGL RP F115 Pipeline Pressure Response   ±
CALCULATOR MODULE : DNVGL RP F115 Pipeline Test Fluid Volume   ±
CALCULATOR MODULE : Two Phase Gas Liquid Viscosity   ±

Calculate dynamic and kinematic viscosity for two phase gas liquids (gas and oil or gas and liquid).

Kinematic viscosity is equal to the dynamic viscosity divided by the density of the fluid. The viscosity of two phase fluids and mixtures can be calculated from the dynamic viscosity and the volume fraction. The gas oil ratio is the ratio of gas moles to oil volume. It is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters).

Change Module :

Related Modules :

CALCULATOR MODULE : Three Phase Gas Oil Water (Black Oil) Viscosity   ±

Calculate dynamic and kinematic viscosity for three phase black oil (gas oil and water).

Kinematic viscosity is equal to the dynamic viscosity divided by the density of the fluid. The viscosity of two phase fluids and mixtures can be calculated from the dynamic viscosity and the volume fraction.

The gas oil ratio is the ratio of gas moles to oil volume. The gas mass fraction is the ratio of gas mass to total fluid mass. The gas volume fraction is the ratio of gas volume to total fluid volume. Water cut is the ratio of water volume over total liquid volume (equals the water volume fraction in the liquid). Gas volume is dependent on fluid temperature and pressure. Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters).

Change Module :

Related Modules :

CALCULATOR MODULE : Two Phase Gas Liquid Density   ±

Calculate fluid density for two phase fluid (oil and gas, or gas and water).

The gas oil ratio is the ratio of gas moles to oil volume. The gas mass fraction is the ratio of gas mass to total fluid mass. The gas volume fraction is the ratio of gas volume to total fluid volume. Gas volume is dependent on fluid temperature and pressure. Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters).

Change Module :

Related Modules :

CALCULATOR MODULE : Three Phase Gas Oil Water (Black Oil) Density   ±

Calculate fluid density for three phase black oil (oil, water and gas).

The gas oil ratio is the ratio of gas moles to oil volume. The gas mass fraction is the ratio of gas mass to total fluid mass. The gas volume fraction is the ratio of gas volume to total fluid volume. Water cut is the ratio of water volume over total liquid volume (equals the water volume fraction in the liquid). Gas volume is dependent on fluid temperature and pressure. Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters).

Change Module :

Related Modules :

CALCULATOR MODULE : Two Phase Gas Liquid Heat Capacity   ±

Calculate two phase gas liquid heat capacity.

Fluid heat capacity can be calculated for single phase phase liqui. single phase gas, or combined liquid and gas. Gas oil ratio (GOR) is the ratio of gas moles over liquid volume. Gas moles are commonly measured by standard cubic feet (scf), and stand cubic meters (scm). Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters).

Change Module :

Related Modules :

CALCULATOR MODULE : Three Phase Gas Oil Water (Black Oil) Heat Capacity   ±

Calculate three phase gas oil water (black oil) heat capacity.

Black oil is a three phase mixture of oil, water and gas. Water cut is measured relative to the total liquid volume (gas volume is ignored). Gas oil ratio (GOR) is measured relative to the oil volume at standard conditions (water volume is ignored). Gas oil ratio (GOR) is the ratio of gas moles over liquid volume. Gas moles are commonly measured by standard cubic feet (scf), and stand cubic meters (scm). Gas oil ratio is often measured as gas standard volume (scf or scm) per oil volume (barrels, gallons, cubic feet or cubic meters).

Change Module :

Related Modules :

CALCULATOR MODULE : IAPWS R7-97 Steam Volume And Mass   ±

Calculate IAPWS R7-97 steam table properties, and steam energy from temperature, pressure and mass.

Steam table properties can be calculated for water and steam, saturated water, saturated steam, saturated water and steam, metastable water, and metastable steam. The enthalpy and internal energy are calculated from the mass. Use the Result Plot option to plot the steam properties versus temperature and pressure.

Note : There is an anomaly in the steam calculation for region 3 between the saturated vapour line, the region 2/3 boundary, and the critical pressure. Refer to the region 3 anomaly help page for more details (click the utility button on the data bar). IAPWS R7-97 is intended for industrial use, and is a simplified version of IAPWS R6-95 for scientific use. IAPWS R7-97 was developed as an improvement of the IFC-67 model.

Reference : IAPWS R7-97 Industrial Formulation for thermodynamic Properties of Water and Steam

Change Module :

CALCULATOR MODULE : IAPWS R7-97 Steam Volume And Mass Flow Rate   ±

Calculate IAPWS R7-97 steam table properties, and steam power from temperature, pressure and mass flow rate.

Steam table properties can be calculated for water and steam, saturated water, saturated steam, saturated water and steam, metastable water, and metastable steam. The enthalpy rate and internal energy rate (or power) are calculated from the mass flow rate.

Note : There is an anomaly in the steam calculation for region 3 between the saturated vapour line, the region 2/3 boundary, and the critical pressure. Refer to the region 3 anomaly help page for more details (click the utility button on the data bar). IAPWS R7-97 is intended for industrial use, and is a simplified version of IAPWS R6-95 for scientific use. IAPWS R7-97 was developed as an improvement of the IFC-67 model.

Reference : IAPWS R7-97 Industrial Formulation for thermodynamic Properties of Water and Steam

Change Module :

CALCULATOR MODULE : Tank Or Pressure Vessel Piping Volume   ±

Calculate the fluid volume and mass for tank and vessel piping.

Fluid volume and mass can be calculated for liquid piping, gas piping, two phase gas and liquid piping, or three phase gas, water and oil (black oil). The piping is assumed to be full and mixed (ie flowing).

Change Module :

Related Modules :