Pipeng Toolbox : Triangular Beam Section Calculators Blank User
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Demo

Triangular Beam Cross Section

Calculate beam cross section properties for triangle beams: cross section area, moment of inertia, polar moment of inertia, mass moment of inertia, plastic modulus, section modulus, shape factor, radius of gyration, EI, EA, EAα, unit mass, total mass, unit weight and specific gravity.

Equilateral triangles have three equal sides, and three equal angles. Isoceles triangles have two equal sides, and two equal angles. Scalene triangles have three unequal sides and three unequal angles. For hollow sections, the wall thickness is assumed constant on all sides. Refer to the figures for more details.

Reference : Roark's Formulas For Stress And Strain, Warren C Young, McGraw Hill

Change Module :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : Beam Cross Section Properties (Equilateral Triangle Beam) [FREE]   ±

Calculate equilateral triangle beam cross section properties for solid and hollow beams.

Equilateral triangles have three equal sides, and three equal angles (60 degrees). For hollow triangles, the wall thickness is assumed to be equal on all three sides. Refer to the figure for more details.

Tool Input

  • modptype : Material Type
    • αu : User Defined Thermal Expansion Coefficient
    • Eu : User Defined Elastic Modulus
    • Gu : User Defined Shear Modulus
    • ρpu : User Defined Density
  • axstype : Cross Section Area Type
  • mltype : Unit Mass And Unit Weight Type
  • mmtype : Added Mass Type (Submerged Beams Only)
    • Cmu : User Defined Added Mass Coefficient
  • axistype : Bending Axis Type
  • a : Beam Width
  • ta : Wall Thickness
  • L : Length
  • ρc : Contents Fluid Density
  • ρd : Displaced Fluid Density

Tool Output

  • α : Thermal Expansion Coefficient
  • ρb : Beam Density
  • Ac : Contents Cross Section Area
  • Ad : Displaced Cross Section Area
  • Ax : Beam Cross Section Area
  • Cm : Added Mass Coefficient
  • E : Elastic Modulus
  • EA : E x A
  • EAα : E x A x alpha
  • EI : E x I
  • G : Shear Modulus
  • I : Moment Of Inertia
  • Ip : Polar Moment Of Inertia
  • J : Mass Moment Of Inertia
  • L/r : Slenderness Ratio
  • M : Total Beam Mass (Including Contents)
  • SF : Shape Factor
  • SG : Specific Gravity (Submerged Beams Only)
  • Ya : Distance From Outer Fibre To Centroid
  • Yb : Distance From Outer Fibre To Centroid
  • Yp : Distance From Base Of Triangle To Plastic Centroid
  • Za : Section Modulus (I / Ya)
  • Zb : Section Modulus (I / Yb)
  • Zp : Plastic Modulus
  • ai : Inside Width
  • d : Beam Height
  • di : Inside Height
  • m : Mass Per Unit Length (Including Contents And Added Mass)
  • ma : Added Unit Mass
  • mb : Beam Unit Mass
  • mc : Contents Fluid Mass
  • md : Displaced Fluid Unit Mass
  • r : Radius Of Gyration
  • w : Unit Weight (Including Contents And Buoyancy)

CALCULATOR : Beam Cross Section Properties (Isoceles Triangle Beam) [FREE]   ±

Calculate isoceles triangle beam cross section properties for solid and hollow beams.

Isoceles triangles have two equal sides, and two equal angles. For hollow triangles, the wall thickness is assumed to be equal on all three sides. The isoceles triangle calculator can also be used for equilateral triangle beams. Refer to the figure for more details.

Tool Input

  • modptype : Material Type
    • αu : User Defined Thermal Expansion Coefficient
    • Eu : User Defined Elastic Modulus
    • Gu : User Defined Shear Modulus
    • ρpu : User Defined Density
  • axstype : Cross Section Area Type
  • mltype : Unit Mass And Unit Weight Type
  • mmtype : Added Mass Type (Submerged Beams Only)
    • Cmu : User Defined Added Mass Coefficient
  • axistype : Bending Axis Type
  • b : Beam Base Width
  • d : Beam Height
  • t : Wall Thickness
  • L : Length
  • ρc : Contents Fluid Density
  • ρd : Displaced Fluid Density

Tool Output

  • α : Thermal Expansion Coefficient
  • ρb : Beam Density
  • Ac : Contents Cross Section Area
  • Ad : Displaced Cross Section Area
  • Ax : Beam Cross Section Area
  • Cm : Added Mass Coefficient
  • E : Elastic Modulus
  • EA : E x A
  • EAα : E x A x alpha
  • EI : E x I
  • G : Shear Modulus
  • I : Moment Of Inertia
  • Ip : Polar Moment Of Inertia
  • J : Mass Moment Of Inertia
  • L/r : Slenderness Ratio
  • M : Total Beam Mass (Including Contents)
  • SF : Shape Factor
  • SG : Specific Gravity (Submerged Beams Only)
  • Ya : Distance From Outer Fibre To Centroid
  • Yb : Distance From Outer Fibre To Centroid
  • Yp : Distance From Base Of Triangle To Plastic Centroid
  • Za : Section Modulus (I / Ya)
  • Zb : Section Modulus (I / Yb)
  • Zp : Plastic Modulus
  • bi : Inside Width
  • di : Inside Height
  • m : Mass Per Unit Length (Including Contents And Added Mass)
  • ma : Added Unit Mass
  • mb : Beam Unit Mass
  • mc : Contents Fluid Mass
  • md : Displaced Fluid Unit Mass
  • r : Radius Of Gyration
  • w : Unit Weight (Including Contents And Buoyancy)

CALCULATOR : Beam Cross Section Properties (Scalene Triangle Beam) [FREE]   ±

Calculate scalene triangle beam cross section properties.

Scalene triangles have three unequal sides and three unequal angles. For triangles with an obtuse angle greater than 90 degrees, the longest side should be used as the base so that the offset is positive. The scalene triangle calculator can also be used for isoceles triangles and equilateral triangles.

Axis L is parallel to the base. Axis M is perpendicular to the base. Axis 1 and 2 are the pricipal axes. Section properties can also be calculated for an axis parallel to either side, perpendicular to either side, or at a user defined angle relative to the L axis. Refer to the figure for more details.

Tool Input

  • modptype : Material Type
    • αu : User Defined Thermal Expansion Coefficient
    • Eu : User Defined Elastic Modulus
    • Gu : User Defined Shear Modulus
    • ρpu : User Defined Density
  • mltype : Unit Mass And Unit Weight Type
  • mmtype : Added Mass Type (Submerged Beams Only)
    • Cmu : User Defined Added Mass Coefficient
  • axistype : Bending Axis Type
    • θu : User Defined Axis Angle Relative To L Axis (Positive Anti Clockwise)
  • d : Beam Height
  • b : Beam Bottom Width
  • a : Beam Offset
  • L : Length
  • ρd : Displaced Fluid Density

Tool Output

  • α : Thermal Expansion Coefficient
  • θ : Axis Angle Relative To L Axis (Positive Anti Clockwise)
  • ρb : Beam Density
  • Ad : Displaced Cross Section Area
  • Ax : Beam Cross Section Area
  • Cm : Added Mass Coefficient
  • E : Elastic Modulus
  • EA : E x A
  • EAα : E x A x alpha
  • EI : E x I
  • G : Shear Modulus
  • H : Product Of Inertia
  • I : Moment Of Inertia
  • Ip : Polar Moment Of Inertia
  • J : Mass Moment Of Inertia
  • L/r : Slenderness Ratio
  • M : Total Beam Mass (Without Contents)
  • SG : Specific Gravity (Submerged Beams Only)
  • Ya : Distance From Outer Fibre To Centroid a
  • Yb : Distance From Outer Fibre To Centroid b
  • Za : Section Modulus a
  • Zb : Section Modulus b
  • m : Mass Per Unit Length (Including Contents And Added Mass)
  • ma : Added Unit Mass
  • mb : Beam Unit Mass
  • md : Displaced Fluid Unit Mass
  • r : Radius Of Gyration
  • w : Unit Weight (Including Contents And Buoyancy)

CALCULATOR : Beam Cross Section Right Angle Triangle Base And Height [FREE]   ±

Calculate right angle triangle base and height from pythagoras theorem.

For a right angle triangle, one of the internal angles equals 90 degrees. The base and height can be calculated from the known lengths and angles using cos, sin, tan, and Pythagorus theorem.

Tool Input

  • trtype : Triangle Geometry Type
    • au : User Defined Length Base Side a
    • bu : User Defined Length Right Side b
    • cu : User Defined Length Left Side c (Hypotenuse)
    • Au : User Defined Angle Opposite Side a
    • Bu : User Defined Angle Opposite Side b
    • hcu : User Defined Height From Side c (Hypotenuse)

Tool Output

  • A : Angle Opposite Side a
  • B : Angle Opposite Side b
  • C : Angle Opposite Side c
  • X : Cross Section Area
  • XA : External Angle A
  • XB : External Angle B
  • XC : External Angle C
  • a : Length Side a
  • b : Length Side b
  • c : Length Side c (Hypotenuse)
  • ha : Height From Side a
  • hb : Height From Side b
  • hc : Height From Side c

CALCULATOR : Beam Cross Section Scalene Triangle Base Height And Offset [FREE]   ±

Calculate scalene triangle base, height and offset from the sin rule and cosine rule.

Scalene triangles have three unequal sides, and three unequal angles. The base, height and offset can be calculated from the known lengths and angles using either the sin rule or the cosine rule. The triangle geometry should be arranged so that the offset is positive.

Tool Input

  • trtype : Triangle Geometry Type
    • au : User Defined Length Base Side a
    • bu : User Defined Length Right Side b
    • cu : User Defined Length Left Side c
    • obu : User Defined Right Side Offset (Top From Side b)
    • Au : User Defined Angle Opposite Side a
    • Bu : User Defined Angle Opposite Side b
    • Cu : User Defined Angle Opposite Side c
    • hau : User Defined Height From Base Side a
  • offtype : Offset Type

Tool Output

  • A : Angle Opposite Side a
  • B : Angle Opposite Side b
  • C : Angle Opposite Side c
  • X : Cross Section Area
  • XA : External Angle A
  • XB : External Angle B
  • XC : External Angle C
  • a : Length Side a
  • b : Length Side b
  • c : Length Side c
  • cvg : Convergence Check
  • ha : Height From Side a
  • hb : Height From Side b
  • hc : Height From Side c
  • ol : Left Side Offset
  • or : Right Side Offset

CALCULATOR : Beam Cross Section Equilateral Triangle Height [FREE]   ±

Calculate equilateral triangle height

For an equilateral triangle all three sides and all three angles are equal (the internal angles = 60 degrees). The base and height can be calculated from either the known height, or the known base length.

Tool Input

  • trtype : Triangle Geometry Type
    • au : User Defined Length Side
    • hau : User Defined Height From Side

Tool Output

  • A : Angle A
  • X : Area A
  • XA : Angle B
  • a : Length A
  • ha : Height

CALCULATOR : Beam Cross Section Isoceles Triangle Base And Height [FREE]   ±

Calculate isoceles triangle base and height from the sin rule and cosine rule.

Isoceles triangles have two equal sides and two equal angles. The base and height can be calculated from the known lengths and angles using either cos, sin and tan, or the sin rule and the cosine rule.

Tool Input

  • trtype : Triangle Geometry Type
    • au : User Defined Length Base Side
    • bu : User Defined Length Equal Side
    • Au : User Defined Angle Opposite Base Side
    • Bu : User Defined Angle Opposite Equal Side
    • hau : User Defined Height From Base Side
    • hbu : User Defined Height From Equal Side

Tool Output

  • A : Angle Opposite Side a
  • B : Angle Opposite Side b
  • C : Angle Opposite Side c
  • X : Cross Section Area
  • XA : External Angle A
  • XB : External Angle B
  • XC : External Angle C
  • a : Length Side a
  • b : Length Side b
  • c : Length Side c
  • ha : Height From Side a
  • hb : Height From Side b
  • hc : Height From Side c