Pipeng Toolbox : Pipe Velocity And Flowrate Calculators Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Pipeline Fluid Velocity And Flowrate

Calculate pipeline fluid velocity, density and flowrate for two phase gas liquid, three phase gas oil and water (black oil), single phase gas, and single phase liquid.

Two phase gas liquid density is calculated from the gas oil ratio (GOR). Three phase black oil density is calculated from the gas oil ratio (GOR), and water cut (WC). Single phase gas density is calculated from temperature, pressure, specific gravity (relative to air), and compressibility factor. Single phase liquid density can be calcuated from specific gravity, degrees Baume (Be+), degrees Baume (Be-), degrees API, or degrees Twaddell.

Change Module :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : Pipeline Two Phase Gas Liquid Density [FREE]   ±

Calculate pipeline fluid density for single phase fluid (oil or water), single phase gas, and two phase gas liquid.

Gas oil ratio (GOR) is the ratio of gas moles over oil volume. Gas moles are commonly measured as gas volume at standard conditions (eg SCF or SCM).

Tool Input

  • mvtype : Fluid Density Type
    • GORu : User Defined Gas Oil Ratio
    • Xmu : User Defined Gas Mass Fraction
    • Xvu : User Defined Gas Volume Fraction
    • ρu : User Defined Fluid Density
  • ρl : Liquid Density
  • P : Fluid Pressure
  • T : Fluid Temperature
  • Z : Gas Compressibility Factor
  • SG : Gas Specific Gravity

Tool Output

  • ρf : Average Fluid Density
  • ρg : Gas Density (At T P)
  • GOR : Gas Oil Ratio
  • Xm : Gas Mass Fraction
  • Xv : Gas Volume Fraction (At T P)
  • vg : Gas Mole Volume (At T P)

CALCULATOR : Pipeline Three Phase Black Oil Density [FREE]   ±

Calculate pipeline fluid density for two phase (oil and water) liquid, single phase gas, or three phase black oil (oil, water and gas).

Water cut is measured relative to the total liquid volume (gas volume is ignored). Gas oil ratio (GOR) is measured relative to the oil volume at standard conditions (water volume is ignored).

Tool Input

  • mvtype : Fluid Density Type
    • GORu : User Defined Gas Oil Ratio
    • WCu : User Defined Water Cut
    • ρu : User Defined Fluid Density
  • ρo : Oil Density
  • ρw : Water Density
  • P : Fluid Pressure
  • T : Fluid Temperature
  • Z : Gas Compressibility Factor
  • SG : Gas Specific Gravity

Tool Output

  • ρf : Average Fluid Density
  • ρg : Gas Density
  • ρl : Liquid Density
  • GOR : Gas Oil Ratio
  • WC : Water Cut
  • Xmg : Gas Mass Fraction
  • Xml : Liquid Mass Fraction
  • Xmo : Oil Mass Fraction
  • Xmw : Water Mass Fraction
  • Xvg : Gas Volume Fraction
  • Xvl : Liquid Volume Fraction
  • Xvo : Oil Volume Fraction
  • Xvw : Water Volume Fraction
  • vg : Gas Mole Volume (At T P)

CALCULATOR : Pipeline Gas Density And Compressibility Factor [FREE]   ±

Calculate pipeline gas compressibility factor and density from gas temperature and pressure for selected gases.

The gas compressibility factor is calculated from the critical point temperature, critical point temperature, and the accentric factor using either the Peng Robinson, Soave, Redlich Kwong or Van Der Waals equations of state (EOS). The compressibility factor calculation is valid for gas phase only. Use the Result Plot option to plot compressibility factor versus pressure and temperature, compressibility factor versus pressure and equation of state type, or compressibility factor versus temperature and equation of state type.

Tool Input

  • fluidtype : Fluid Type
    • SGu : User Defined Gas Specific Gravity
    • ωu : User Defined Acentric Factor
    • Pcu : User Defined Critical Pressure
    • Tcu : User Defined Critical Temperature
  • eostype : Equation Of State
    • Zu : User Defined Compressibility Factor
  • P : Fluid Pressure
  • T : Fluid Temperature

Tool Output

  • ρ : Fluid Density
  • ω : Accentric Factor
  • Pc : Critical Point Pressure
  • Pr : Reduced Pressure
  • SG : Gas Specific Gravity Relative To Air
  • Tc : Critical Point Temperature
  • Tr : Reduced Temperature
  • Vm : Molar Volume
  • Z : Compressibility Factor
  • cvg : Convergence Check
  • mw : Fluid Molar Mass

CALCULATOR : Pipeline Diameter And Wall Thickness Schedule [FREE]   ±

Calculate pipeline diameter, pressure design wall thickness (nominal wall thickness minus corrosion allowance) from nominal wall thickness.

For ASME B31.4 (oil pipelines), ASME B31.8 (gas pipelines) and AS 2885 (oil and gas pipelines) the fabrication allowance is accounted for in the design factor. Fabrication allowance is not included when calculating the pressure design thickness.

Select the pipe schedule (NPS or ISO etc), pipe diameter and wall thickness, or use the user defined option. Use the Result Table option to display the pipe schedule with nominal wall thickness and pressure design wall thickness for the selected diameter.

Tool Input

  • schdtype : Line Pipe Schedule Type
  • diamtype : Line Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • c : Wall Thickness Corrosion Allowance

Tool Output

  • ID : Nominal Inside Diameter
  • OD : Nominal Outside Diameter
  • OD/tn : Diameter Over Wall Thickness Ratio
  • tn : Nominal Wall Thickness
  • tp : Pressure Design Wall Thickness

CALCULATOR : Pipeline Two Phase Gas Liquid Velocity And Flowrate [FREE]   ±

Calculate pipeline fluid density and flow rate for single phase fluid, single phase gas, and two phase gas liquid.

Gas oil ratio (GOR) is the ratio of gas moles over oil volume. Gas moles are commonly measured as gas volume at standard conditions (eg SCF or SCM).

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • mvtype : Fluid Density Type
    • GORu : User Defined Gas Oil Ratio
    • Xmu : User Defined Gas Mass Fraction
    • Xvu : User Defined Gas Volume Fraction
    • ρu : User Defined Fluid Density
  • voltype : Fluid Flowrate Type
    • Qlu : User Defined Liquid Volume Flow Rate
    • Ngu : User Defined Gas Mole Flow Rate
    • Qfu : User Defined Total Fluid Volume Flow Rate
    • Mfu : User Defined Total Fluid Mass Flow Rate
    • Vfu : User Defined Fluid Velocity
  • ρl : Liquid Density
  • P : Fluid Pressure
  • T : Fluid Temperature
  • Z : Gas Compressibility Factor
  • SG : Gas Specific Gravity

Tool Output

  • ρf : Average Fluid Density
  • ρg : Gas Density (At T P)
  • GOR : Gas Oil Ratio
  • ID : Inside Diameter
  • Mf : Total Fluid Mass Flowrate
  • Mg : Gas Mass Flowrate
  • Ml : Liquid Mass Flowrate
  • Ng : Gas Mole Flowrate
  • Qf : Total Fluid Volume Flowrate
  • Qg : Gas Volume Flowrate (At T P )
  • Ql : Liquid Volume Flowrate
  • Vf : Average Fluid Velocity
  • Vg : Superficial Gas Velocity
  • Vl : Superficial Liquid Velocity
  • Xm : Gas Mass Fraction
  • Xv : Gas Volume Fraction (At T P)
  • vg : Gas Mole Volume (At T P)

CALCULATOR : Pipeline Three Phase Gas Oil And Water Velocity And Flowrate [PLUS]   ±

Calculate pipeline three phase black oil density and flow rate. Black oil is a three phase mixture of oil, water and gas. Water cut is measured relative to the total liquid volume (gas volume is ignored). Gas oil ratio (GOR) is measured relative to the oil volume at standard conditions (water volume is ignored).

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • mvtype : Fluid Density Type
    • GORu : User Defined Gas Oil Ratio
    • WCu : User Defined Water Cut
    • ρu : User Defined Fluid Density
  • voltype : Fluid Volume Type
    • Qou : User Defined Oil Volume Flow Rate
    • Qlu : User Defined Liquid Volume Flow Rate
    • Ngu : User Defined Gas Mole Flow Rate
    • Qfu : User Defined Total Fluid Volume Flow Rate
    • Mfu : User Defined Total Fluid Mass Flow Rate
    • Vfu : User Defined Fluid Velocity
  • ρo : Oil Density
  • ρw : Water Density
  • P : Fluid Pressure
  • T : Fluid Temperature
  • Z : Gas Compressibility Factor
  • SG : Gas Specific Gravity

Tool Output

  • ρf : Average Fluid Density
  • ρg : Gas Density
  • ρl : Liquid Density
  • GOR : Gas Oil Ratio
  • ID : Inside Diameter
  • Mf : Total Fluid Mass Flowrate
  • Mg : Gas Mass Flowrate
  • Ml : Liquid Mass Flowrate
  • Mo : Oil Mass Flowrate
  • Mw : Water Mass Flowrate
  • Ng : Gas Mole Flowrate
  • Qf : Total Fluid Volume Flowrate
  • Qg : Gas Volume Flowrate
  • Ql : Liquid Volume Flowrate
  • Qo : Oil Volume Flowrate
  • Qw : Water Volume Flowrate
  • Vf : Average Fluid Velocity
  • Vg : Gas Superficial Velocity
  • Vl : Liquid Superficial Velocity
  • Vo : Oil Superficial Velocity
  • Vw : Water Superficial Velocity
  • WC : Water Cut
  • Xmg : Gas Mass Fraction
  • Xml : Liquid Mass Fraction
  • Xmo : Oil Mass Fraction
  • Xmw : Water Mass Fraction
  • Xvg : Gas Volume Fraction
  • Xvl : Liquid Volume Fraction
  • Xvo : Oil Volume Fraction
  • Xvw : Water Volume Fraction
  • vg : Gas Mole Volume (At T P)

CALCULATOR : Pipeline Gas Velocity And Flowrate [FREE]   ±

Calculate pipeline single phase gas specific gravity, molar mass and flowrate.

Gas molar mass is approximately equal to the molar mass of dry air times the gas specific gravity at standard conditions (for most gases the compressibility factor Z is approximately equal to 1 at standard conditions). The molar mass of dry air is taken as 28.964 kg/kg-mole. For gas mixtures, gas specific gravity is easier to measure than the molar mass.

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • fluidtype : Gas Type
    • SGu : User Defined Gas Specific Gravity
  • voltype : Gas Flowrate Type
    • Qfu : User Defined Gas Volume Flow Rate
    • Mfu : User Defined Gas Mass Flow Rate
    • Ngu : User Defined Gas Mole Flow Rate
    • Vfu : User Defined Gas Velocity
  • P : Gas Pressure
  • T : Gas Temperature
  • Z : Gas Compressibility Factor

Tool Output

  • ρ : Gas Density
  • ID : Inside Diameter
  • M : Gas Molar Mass
  • Mf : Gas Mass Flowrate
  • Ng : Gas Mole Flowrate
  • Qf : Gas Volume Flowrate (At T P)
  • R : Gas Constant
  • SG : Gas Specific Gravity
  • Vf : Gas Velocity
  • vg : Gas Mole Volume (At T P)

CALCULATOR : Pipeline Liquid Velocity And Flowrate [FREE]   ±

Calculate pipeline single phase liquid density, flowrate, and specific gravity, degrees Baume, degrees Twaddell, and degrees API.

For liquids lighter than or equal to water the density can be defined as degrees API, or degrees Baume (Be-). For liquids heavier than water the density can be defined by degrees Baume (Be+), or degrees Twaddell.

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • sgtype : Density Type
    • SGu : User Defined Specific Gravity
    • Be+u : User Defined Degrees Baume SG > 1
    • Be-u : User Defined Degrees Baume SG <= 1
    • Twu : User Defined Degrees Twaddell SG > 1
    • APIu : User Defined Degrees API SG <= 1
    • ρu : User Defined Liquid Density
  • voltype : Fluid Flowrate Type
    • Qfu : User Defined Volume Flow Rate
    • Mfu : User Defined Mass Flow Rate
    • Vfu : User Defined Fluid Velocity

Tool Output

  • ρ : Fluid Density
  • API : Degrees API SG ≤ 1
  • Be+ : Degrees Baume SG > 1
  • Be- : Degrees Baume SG ≤ 1
  • ID : Inside Diameter
  • Mf : Liquid Mass Flowrate
  • Qf : Liquid Volume Flowrate
  • SG : Specific Gravity
  • Tw : Degrees Twaddell SG > 1
  • Vf : Fluid Velocity