Pipeng Toolbox : DNVGL-ST-F101 Axial Load Calculators Blank User
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Demo

DNVGL ST F101 Submarine Pipeline Axial Load

Calculate DNVGL-ST-F101 submarine pipeline axial load from temperature and pressure. The axial load calculations are valid in the elastic range only (check that the equivalent stress is less than the yield stress). The calculators include a combined load controlled check, displacement controlled check, allowable stress design check (ASD), and an equivalent stress check (von Mises).

Reference : DNVGL-ST-F101 : Submarine Pipeline Systems (Download from the DNVGL website)

Change Module :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : DNVGL ST F101 Section 4.7.4 Subsea Pipeline Axial Load And Local Buckling Check (Elastic Range) [PLUS]   ±

Calculate subsea pipeline effective axial load, pipe wall load and local buckling check in the elastic range (DNVGL-ST-F101 section 4.7.4).

The interaction checks are calculated for load controlled conditions, displacement controlled conditions, and for allowable stress design (ASD). The ASD check is valid for displacement controlled loads only. The strain is calculated from the stress, assuming the stress is in the elastic range. The axial loads and stress checks are not valid in the plastic range.

Tool Input

  • plitype : Local Internal Pressure Type
    • Prdu : User Defined Design Pressure At Reference Elevation
    • Priu : User Defined Incidental Pressure At Reference Elevation
    • Pliu : User Defined Incidental Pressure At Local Elevation
  • ginctype : Incidental Pressure Factor Type
    • γincu : User Defined Incidental Pressure Factor
  • pletype : Local External Pressure Type
    • Pleu : User Defined Local External Pressure
  • syutype : Stress Table Type
  • mattype : Material Strength Type
    • SMYSu : User Defined Specified Minimum Yield Stress
    • SMTSu : User Defined Specified Minimum Tensile Stress
  • rortype : Maximum SMYS Over SMTS Ratio Type
    • Rto.5/Rmu : User Defined Maximum Rt0.5 Over Rm Ratio
  • syttype : Temperature Derating Type
    • fytu : User Defined Yield Stress Temperature Derating
    • futu : User Defined Ultimate Stress Temperature Derating
  • autype : Material Strength Factor Type
  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • modptype : Pipe Material Type
    • νu : User Defined Pipe Poisson's Ratio
    • Eu : User Defined Pipe Elastic Modulus
    • αpu : User Defined Pipe Thermal Expansion Coefficient
  • lattype : Lateral Point Load Type
    • Ru : User Defined Reaction Force From Point Load
  • ludertype : Luder Plateau Type
  • sectype : Pipe Section Properties Type
    • Mpu : User Defined Plastic Bending Moment
    • Spu : User Defined Plastic Axial Load
    • Asu : User Defined Steel Cross Section Area
    • Iu : User Defined Pipe Second Area Moment
    • EAαu : User Defined Pipe E x A x alpha
  • agwtype : Girth Weld Factor Type
    • αgwu : User Defined Girth Weld Factor
  • gsctype : Safety Class Resistance Factor Type
    • γsclbu : User Defined Load Controlled Resistance Factor
    • γscdcu : User Defined Displacement Controlled Resistance Factor
    • ηeu : User Defined Equivalent Stress Usage Factor
  • optype : Characteristic Wall Thickness Type
  • loadtype : Axial Load Type
    • Ssdu : User Defined Effective Axial Load
    • Nsdu : User Defined Pipe Wall Axial Load
  • checktype : Stress Check Type
  • ta : Corrosion Allowance
  • Tin : Installation Temperature
  • H : Pipe Installation Load
  • Msd : Design Bending Moment
  • Td : Operating Temperature
  • ρf : Operating Fluid Density
  • ρe : External Fluid Density
  • Zs : Surface Elevation
  • Zr : Reference Elevation
  • Zl : Local Elevation

Tool Output

  • ΔPl : Delta Pressure Across Pipe Wall At Local Elevation
  • ΔPl/Pb : Delta Pressure Over Burst Pressure Ratio
  • Δz : Local Elevation Relative To Reference Elevation
  • αgw : Girth Weld Factor
  • αh : SMYS Over SMTS Maximum Ratio
  • αp : Pipe Thermal Expansion Coefficient
  • αu : Material Strength Factor
  • γinc : Incidental Pressure Factor
  • γm : Material Resistance Factor
  • γscdc : Displacement Controlled Resistance Factor
  • γscld : Load Controlled Resistance Factor
  • εsd : Design Axial Strain
  • ηe : Equivalent Stress Usage Factor
  • ν : Pipe Poisson's Ratio
  • σh : Hoop Stress
  • σw : Pipe Wall Axial Stress
  • As : Steel Cross Section Area
  • CHK : Load Check (≤ 1)
  • D/t2 : Diameter Over t2 Ratio
  • E : Pipe Elastic Modulus
  • EAα : Pipe E x A x alpha
  • Is : Steel Second Area Moment
  • Mp : Plastic Bending Moment
  • Msd/Mp : Design Moment Over Plastic Moment Ratio
  • Np : Plastic Axial Load
  • Nsd : Design Wall Load
  • OD : Pipe Nominal Outside Diameter
  • Pb : Burst Pressure
  • Pd : Design Pressure At Reference Elevation
  • Ple : External Pressure At Local Elevation
  • Pli : Internal Pressure At Local Elevation
  • Pri : Incidental Pressure At Reference Elevation
  • SMTS : Specified Minimum Tensile Stress
  • SMYS : Specified Minimum Yield Stress
  • Sb : Bending Stress
  • Se : Equivalent Stress
  • Se/Sy : Equivalent Stress Over Yield Stress Ratio
  • Ssd : Design Global Axial Load
  • Ssd/Sp : Design Load Over Plastic Load Ratio
  • fcb : Burst Stress
  • fu : Ultimate Stress
  • fut : Ultimate Derating Stress
  • fy : Yield Stress
  • fyt : Yield Derating Stress
  • t2 : Wall Thickness t2
  • tn : Pipe Nominal Wall Thickness
  • wd : Water Depth At Local Elevation

CALCULATOR : DNVGL ST F101 Section 5.3.3 Subsea Pipeline Derated Yield Stress And Tensile Stress From Temperature [FREE]   ±

Calculate subsea pipeline temperature derating stress from temperature (DNVGL-ST-F101 section 5.3.3 Figure 5-2).

The derating stress is valid for temperatures up to 200 degrees C. For temperatures above 200 C material tests should be performed. For low temperature pipelines fracture toughness should also be considered.

Use the Result Table option to display a table of derated yield stress versus material type at the design temperature. Use the Result Plot option to display a plot of derated yield stress versus temperature for duplex stainless 22Cr 25Cr, and carbon manganese steel 13Cr curves.

Tool Input

  • syutype : Stress Table Type
  • mattype : Material Strength Type
    • SMYSu : User Defined Specified Minimum Yield Stress
    • SMTSu : User Defined Specified Minimum Tensile Stress
  • syttype : Temperature Derating Type
    • fytu : User Defined Yield Stress Temperature Derating
    • futu : User Defined Ultimate Stress Temperature Derating
  • autype : Material Strength Factor Type
  • Td : Design Temperature

Tool Output

  • αu : Material Strength Factor
  • SMTS : Specified Minimum Tensile Stress
  • SMYS : Specified Minimum Yield Stress
  • fcb : Burst Stress
  • fu : Tensile Stress
  • fut : Temperature Derating Tensile Stress
  • fy : Yield Stress
  • fyt : Temperature Derating Yield Stress

CALCULATOR : DNVGL ST F101 Subsea Pipeline Diameter And Wall Thickness Schedule [FREE]   ±

Calculate DNVGL-ST-F101 subsea pipeline diameter and pressure design wall thickness from pipe schedule.

The pressure design thickness equals the nominal wall thickness minus the corrosion allowance and fabrication allowance. The minimum wall thickness equals the nominal wall thickness minus the fabrication allowance. The corrosion allowance includes mechanical allowances such as threads and damage etc. Use the Result Table option display a table of pressure design wall thickness versus wall thickness for the selected diameter schedule.

Tool Input

  • schdtype : Schedule Type
  • diamtype : Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • ttoltype : Wall Thickness Fabrication Tolerance Type
    • txu : User Defined Negative Wall Thickness Fraction
    • tfu : User Defined Negative Wall Thickness Allowance
  • c : Wall Thickness Corrosion Allowance

Tool Output

  • ID : Nominal Inside Diameter
  • OD : Nominal Outside Diameter
  • OD/tn : Diameter Over Wall Thickness Ratio
  • tf : Wall Thickness Fabrication Allowance
  • tm : Minimum Wall Thickness
  • tn : Nominal Wall Thickness
  • tp : Pressure Design Wall Thickness
  • tx : Wall Thickness Fabrication Fraction

CALCULATOR : DNVGL ST F101 Section 4.7.3 Subsea Pipeline Design Load Effect [FREE]   ±

Calculate subsea pipeline load effect combinations for ultimate limit state (ULS), fatigue limit state (FLS), and accident limit state (ALS) (DNVGL-ST-F101 section 4.7.3 table 4-4 and 4-5). Use the Result Table option to display all load effect combinations.

Tool Input

  • gctype : Condition Load Effect Factor Type
    • γcu : User Defined Condition Load Effect Factor
  • gletype : Load Check Type
    • γfu : User Defined Functional Load Factor
    • γeu : User Defined Environmental Load Factor
    • γiu : User Defined Interference Load Factor
    • γau : User Defined Accidental Load Factor
  • M : Bending Loads
  • S : Axial Loads
  • ε : Axial Strain

Tool Output

  • γa : Accidental Load Factor
  • γc : Condition Load Effect Factor
  • γe : Environmental Load Factor
  • γf : Functional Load Factor
  • γi : Interference Load Factor
  • εsd : Design Axial Strain
  • Msd : Design Bending Moment
  • Ssd : Design Axial Load