Pipeng Toolbox : DNVGL-ST-F101 Expansion Spool Calculators Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

DNVGL ST F101 Submarine Pipeline Expansion Spool

Calculate DNVGL-ST-F101 submarine expansion spool local buckling and fatigue check.

The expansion spool is modelled as a simple beam with fixed ends, with a uniform distributed load due to friction and a lateral displacement at one end due to expansion. Pipe cross section properties are calculated for a single pipe layer with no coatings. For pipes with internal liner or external coatings use the user defined cross section properties option.

Reference : DNVGL-ST-F101 : Submarine Pipeline Systems (Download from the DNVGL website)

Change Module :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : DNVGL ST F101 Section 5.4.6 Subsea Pipeline Expansion Spool Load Controlled Local Buckling Check [PLUS]   ±

Calculate subsea pipeline expansion spool load controlled local buckling check from spool length and expansion length (DNVGL-ST-F101 section 5.4.6).

The design load and design moment are calculated from simple beam theory. The expansion spool is modelled as a beam with fixed ends, with a lateral displacement at one end, and a uniform distributed load equal to the lateral friction force. The lateral friction force can only be mobilised upto a maximum spool length.

Tool Input

  • plitype : Local Internal Pressure Type
    • Prdu : User Defined Design Pressure At Reference Elevation
    • Priu : User Defined Incidental Pressure At Reference Elevation
    • Pliu : User Defined Incidental Pressure At Local Elevation
  • ginctype : Incidental Pressure Factor Type
    • γincu : User Defined Incidental Pressure Factor
  • pletype : Local External Pressure Type
    • Pleu : User Defined Local External Pressure
  • syutype : Stress Table Type
  • mattype : Material Strength Type
    • SMYSu : User Defined Specified Minimum Yield Stress
    • SMTSu : User Defined Specified Minimum Tensile Stress
  • syttype : Temperature Derating Type
    • Td : Operating Temperature
    • fytu : User Defined Yield Stress Temperature Derating
    • futu : User Defined Ultimate Stress Temperature Derating
  • autype : Material Strength Factor Type
  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • modptype : Pipe Property Type
    • Eu : User Defined Pipe Elastic Modulus
    • ρpu : User Defined Pipe Density
  • sectype : Pipe Section Properties Type
    • Mpu : User Defined Plastic Bending Moment
    • Spu : User Defined Plastic Axial Load
    • Asu : User Defined Steel Cross Section Area
    • Zu : User Defined Pipe Z Modulus
    • EIu : User Defined Pipe EI Modulus
  • wltype : Pipe Weight Type
    • Wlu : User Defined Pipe Unit Weight
  • frictype : Pipe Soil Friction Type
    • μu : User Defined Lateral Friction Factor
    • Fu : User Defined Lateral Friction Unit Force
  • gsctype : Safety Class Resistance Factor Type
    • γsclbu : User Defined Load Controlled Resistance Factor
  • optype : Characteristic Wall Thickness Type
  • ta : Corrosion Allowance
  • Δ : Expansion Length
  • Lo : Spool Length
  • ρf : Operating Fluid Density
  • ρe : External Fluid Density
  • Zs : Surface Elevation
  • Zr : Reference Elevation
  • Zl : Local Elevation

Tool Output

  • ΔPl : Delta Pressure Across Pipe Wall At Local Elevation
  • ΔPl/Pb : Delta Pressure Over Burst Pressure Ratio
  • Δz : Local Elevation Relative To Reference Elevation
  • αc : Flow Stress Parameter
  • αu : Material Strength Factor
  • β : Diameter Ratio Parameter
  • γinc : Incidental Pressure Factor
  • γm : Material Resistance Factor
  • γp : Flow Stress Diameter Ratio Effect
  • γsclb : Load Controlled Resistance Factor
  • ρp : Pipe Density
  • As : Steel Cross Section Area
  • CHK : Load Controlled Interaction Check (≤ 1)
  • D/t2 : Diameter Over t2 Ratio
  • E : Pipe Elastic Modulus
  • EI : Pipe E x I
  • F : Pipe Unit Lateral Friction Force
  • Lmax : Maximum Spool Length For Lateral Friction Mobilisation
  • Mp : Plastic Bending Moment
  • Msd : Design Bending Moment
  • Msd/Mp : Design Moment Over Plastic Moment Ratio
  • Nsd : Design Wall Load
  • OD : Pipe Nominal Outside Diameter
  • Pb : Burst Pressure
  • Pd : Design Pressure At Reference Elevation
  • Ple : External Pressure At Local Elevation
  • Pli : Internal Pressure At Local Elevation
  • Pri : Incidental Pressure At Reference Elevation
  • SMTS : Specified Minimum Tensile Stress
  • SMYS : Specified Minimum Yield Stress
  • Sb : Bending Stress
  • Scb : Burst Stress
  • Se : Equivalent Stress
  • Se/fy : Equivalent Stress Over Yield Stress Ratio
  • Sh : Hoop Stress
  • Sp : Plastic Axial Load
  • Ssd : Design Axial Load
  • Ssd/Sp : Design Load Over Plastic Load Ratio
  • Sx : Pipe Wall Axial Stress
  • W : Pipe Unit Weight
  • Z : Pipe Z Modulus
  • fu : Ultimate Stress
  • fut : Ultimate Derating Stress
  • fy : Yield Stress
  • fyt : Yield Derating Stress
  • t2 : Wall Thickness t2
  • tn : Pipe Nominal Wall Thickness
  • wd : Water Depth At Local Elevation

CALCULATOR : DNVGL ST F101 Section 5.4.8 Subsea Pipeline Expansion Spool Fatigue Check [PLUS]   ±

Calculate subsea pipeline expansion spool fatigue check from spool length and expansion length (DNVGL-ST-F101 section 5.4.8).

The design load and design moment are calculated from simple beam theory. The expansion spool is modelled as a beam with fixed ends, with a lateral displacement at one end, and a uniform distributed load equal to the lateral friction force. The lateral friction force can only be fully mobilised for spools shorter than the maximum friction length. The fatigue check is calculated in accordance with DNVGL-RP-C203. The maximum stress amplitude is assumed to occur on the offset side of the bend.

Reference : DNVGL-RP-C203 Fatigue Design Of Offshore Steel Structures (Download from the DNVGL website)

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • modptype : Pipe Property Type
    • Eu : User Defined Pipe Elastic Modulus
    • ρpu : User Defined Pipe Density
  • sectype : Pipe Section Properties Type
    • Asu : User Defined Steel Cross Section Area
    • Zu : User Defined Pipe Z Modulus
    • EIu : User Defined Pipe EI Modulus
  • wltype : Pipe Weight Type
    • Wlu : User Defined Pipe Unit Weight
  • frictype : Pipe Soil Friction Type
    • μu : User Defined Lateral Friction Factor
    • Fu : User Defined Lateral Friction Unit Force
  • optype : Characteristic Wall Thickness Type
  • jointtype : Joint Or Material Type
  • csntype : SN Curve Type
  • walltype : Weld Joint Type
    • tru : User Defined Reference Thickness
  • kfactype : Thickness Exponent Type
    • ku : User Defined Thickness Exponent
  • scftype : Stress Concentration Factor Type
    • SCFu : User Defined Stress Concentration Factor
  • dfftype : Design Fatigue Factor Type
    • DFFu : User Defined Design Fatigue Factor
  • ratype : Forging Surface Roughness Type
  • temptype : Temperature Derating Type
    • Td : User Defined Design Maximum Temperature
  • systype : System Effect Factor Type
    • Rsu : User Defined System Effect Log Factor
  • Pd : Internal Pressure
  • ta : Corrosion Allowance
  • Δ : Expansion Length
  • Lo : Spool Length
  • ρf : Operating Fluid Density
  • ρe : External Fluid Density

Tool Output

  • ΔM : Delta Bending Moment Operating And Shutdown
  • ΔN : Delta Axial Load Operating And Shutdown
  • ΔP : Delta Pressure Operating And Shutdown
  • ρp : Pipe Density
  • As : Steel Cross Section Area
  • DFF : Design Fatigue Factor
  • E : Pipe Elastic Modulus
  • EI : Pipe E x I
  • F : Pipe Unit Lateral Friction Force
  • Lmax : Maximum Spool Length For Lateral Friction Mobilisation
  • N : Allowable Number Of Cycles
  • OD : Pipe Nominal Outside Diameter
  • Rm : Material Thickness Derating Log Factor
  • Rs : System Effect Log Factor
  • Rt : Temperature Derating Log Factor
  • SCF : Stress Concentration Factor
  • Sd : Design Stress Amplitude (With SCF)
  • Sm : Mean Stress Amplitude (No SCF)
  • W : Pipe Unit Weight
  • Z : Pipe Z Modulus
  • k : Thickness Exponent
  • t2 : Wall Thickness t2
  • tn : Pipe Nominal Wall Thickness
  • tref : Reference Thickness

CALCULATOR : DNVGL ST F101 Section 5.3.3 Subsea Pipeline Derated Yield Stress And Tensile Stress From Temperature [FREE]   ±

Calculate subsea pipeline temperature derating stress from temperature (DNVGL-ST-F101 section 5.3.3 Figure 5-2).

The derating stress is valid for temperatures up to 200 degrees C. For temperatures above 200 C material tests should be performed. For low temperature pipelines fracture toughness should also be considered.

Use the Result Table option to display a table of derated yield stress versus material type at the design temperature. Use the Result Plot option to display a plot of derated yield stress versus temperature for duplex stainless 22Cr 25Cr, and carbon manganese steel 13Cr curves.

Tool Input

  • syutype : Stress Table Type
  • mattype : Material Strength Type
    • SMYSu : User Defined Specified Minimum Yield Stress
    • SMTSu : User Defined Specified Minimum Tensile Stress
  • syttype : Temperature Derating Type
    • fytu : User Defined Yield Stress Temperature Derating
    • futu : User Defined Ultimate Stress Temperature Derating
  • autype : Material Strength Factor Type
  • Td : Design Temperature

Tool Output

  • αu : Material Strength Factor
  • SMTS : Specified Minimum Tensile Stress
  • SMYS : Specified Minimum Yield Stress
  • fcb : Burst Stress
  • fu : Tensile Stress
  • fut : Temperature Derating Tensile Stress
  • fy : Yield Stress
  • fyt : Temperature Derating Yield Stress

CALCULATOR : DNVGL ST F101 Subsea Pipeline Diameter And Wall Thickness Schedule [FREE]   ±

Calculate DNVGL-ST-F101 subsea pipeline diameter and pressure design wall thickness from pipe schedule.

The pressure design thickness equals the nominal wall thickness minus the corrosion allowance and fabrication allowance. The minimum wall thickness equals the nominal wall thickness minus the fabrication allowance. The corrosion allowance includes mechanical allowances such as threads and damage etc. Use the Result Table option display a table of pressure design wall thickness versus wall thickness for the selected diameter schedule.

Tool Input

  • schdtype : Schedule Type
  • diamtype : Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • ttoltype : Wall Thickness Fabrication Tolerance Type
    • txu : User Defined Negative Wall Thickness Fraction
    • tfu : User Defined Negative Wall Thickness Allowance
  • c : Wall Thickness Corrosion Allowance

Tool Output

  • ID : Nominal Inside Diameter
  • OD : Nominal Outside Diameter
  • OD/tn : Diameter Over Wall Thickness Ratio
  • tf : Wall Thickness Fabrication Allowance
  • tm : Minimum Wall Thickness
  • tn : Nominal Wall Thickness
  • tp : Pressure Design Wall Thickness
  • tx : Wall Thickness Fabrication Fraction