Pipeng Toolbox : Hot Pipe End Expansion Calculators Blank User
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Demo

Hot Pipeline End Expansion

Calculate high temperature pipeline end expansion and anchor points.

Pipeline expansion is caused by the change in pressure and temperature from the installation conditions. The external temperature and pressure are assummed to be constant. The anchor points are the locations at both ends where the friction force is equal to the restrained axial load. Short pipelines have a virtual anchor point at the midway position.

Change Module :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : High Temperature Pipeline End Expansion (Multi Layer Pipe) [PLUS]   ±

Calculate high temperature pipeline end expansion and anchor points from thermal properties and fluid flow rate for multi layer pipelines.

Pipe anchor points and end expansion are calculated for an assumed exponential (cooling) temperature profile with a linear friction model. Check that the convergence is close to or equal to zero.

The fluid flow rate can be defined either by fluid velocity, fluid volume flow rate, or fluid mass flow rate. Temperature decay may be defined by either the decay length, or the decay time. The decay length is only valid for the corresponding fluid flow rate and fluid properties. The decay time can be used for any flow rate provided that the fluid properties are constant. The overall heat transfer coefficient is calculated relative to the inside diameter of the pipe. thermal resistance does not include external film resistance (internal film resistance is included). Use the decay constant calculator to calculate thermal resistance including external film resistance.

Tool Input

  • schdtype : Line Pipe Schedule Type
  • diamtype : Line Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Line Pipe Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • flowtype : Fluid Flow Type
    • Qfu : User Defined Volume Flow Rate
    • Mfu : User Defined Mass Flow Rate
    • Vfu : User Defined Fluid Velocity
  • wltype : Pipe Unit Weight Type
  • hrstype : Pipe Heat Resistance Type
  • sectype : Cross Section Type
    • OODu : User Defined Outer Diameter Including Coatings)
    • EAu : User Defined Pipe E x A
    • EAαu : User Defined Pipe E x A x alpha
    • νu : User Defined Pipe Poisson's Ratio
    • Ru : User Defined Total Thermal Resistance
    • WLu : User Defined Pipe Total Weight Per Length
  • lctype : Decay Length Type
    • Lu* : User Defined Decay Length
    • Tu* : User Defined Decay Time
  • nfltype : Soil Pipe Friction Type
    • Fu : User Defined Soil Friction Force Per Unit Length
    • μeu : User Defined Equivalent Friction Factor
  • WTi : Pipe Liner Wall Thickness
  • ρi : Pipe And Liner Density
  • Ki : Pipe And Liner Thermal Conductivity
  • Ei : Pipe And Liner Elastic Modulus
  • αi : Pipe And Liner Thermal Expansion Coefficient
  • νi : Pipe And Liner Poisson's Ratio
  • WTo : Pipe Coating Wall Thickness
  • ρo : Pipe Coating Density
  • Ko : Pipe Coating Thermal Conductivity
  • X : Position Along Pipe
  • L : Pipeline Length
  • Ti : Inlet Temperature
  • Ta : Ambient Temperature
  • Pi : Internal Pressure
  • Nin : Installation Load
  • ρf : Internal Fluid Density
  • ρb : External Fluid Density
  • Cpf : Fluid Specific Heat Capacity
  • Kf : Internal Fluid Thermal Conductivity
  • μf : Internal Fluid Dynamic Viscosity
  • H : Soil Cover Height To Top Of Pipe
  • Ks : Soil Heat Conductivity
  • Su : Soil Undrained Shear Stress
  • ws : Soil Installed Specific Weight
  • Kso : Soil Earth Pressure Factor
  • μs : Soil Pipe Axial Friction Factor

Tool Output

  • ΔT : Delta Temperature At Inlet
  • μe : Soil Pipe Equivalent Axial Friction Factor
  • ν : Pipe Poisson Ratio
  • Ai : Inlet Anchor Point
  • Ao : Outlet Anchor Point
  • EA : Pipe E x A
  • EAα : Pipe Expansion Modulus
  • F : Soil Friction Force Per Unit Length
  • IID : Pipe Inside Diameter Including Liner
  • L* : Decay Length
  • Lsi : Inlet Slip Length
  • Lso : Outlet Slip Length
  • Mf : Fluid Mass Flow Rate
  • Nfx : Friction Axial Load At X
  • Ngx : Fully Restrained Axial Load At X
  • OD : Line Pipe Diameter
  • OD/tn : Line Pipe Diameter Over Wall Thickness Ratio
  • OOD : Pipe Outer Diameter Including Coatings
  • Qf : Fluid Volume Flowrate
  • R : Total Thermal Resistance
  • Rfi : Internal Film Thermal Resistance
  • Rp : Pipe Thermal Resistance
  • Rs : Soil Thermal Resistance
  • T* : Decay Time
  • To : Outlet Temperature
  • Tx : Temperature At X
  • U : Overall Heat Transfer Coefficient (On IID)
  • Vf : Fluid Velocity
  • W : Total Weight Per Unit Length
  • Xi : Inlet Expansion Length
  • Xo : Outlet Expansion Length
  • cvg : Convergence Check
  • mlb : Buoyancy Unit Mass
  • mlc : Contents Unit Mass
  • mlp : Pipe Unit Mass Including Liner And Coating
  • tn : Line Pipe Thickness