Pipeng Toolbox : Liquid Pipe Pressure Drop Calculators Blank User
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Demo

Liquid Pipeline Pressure Loss From The Darcy Weisbach Equation

Calculate single phase liquid pipeline pressure loss using the Darcy Weisbach equation.

`Po = P - (fd L / (ID) + K) 1/2 ρ V^2 + ρ g (zi - zo) `

where :

Po = outlet pressure
P = inlet pressure
fd = Darcy friction factor
L = piping length
ID = piping inside diameter
K = total friction loss factor for fittings
ρ = fluid density
V = fluid velocity
g = gravity constant
zi = inlet elevation
zo = outlet elevation

The Darcy friction factor can be calculated for

  • Hagen-Poiseuille laminar flow equation
  • original Colebrook White equation
  • modified Colebrook White equation
  • Prandtl Nikuradse smooth pipe equation
  • Blasius smooth pipe equation
  • Colebrook smooth pipe equation
  • Miller smooth pipe equation
  • Konakov smooth pipe equation
  • Von Karman rough pipe equation

For low Reynolds numbers Re < 2000, the fluid flow is laminar and the Darcy friction factor should be calculated using the Hagen-Poiseuille laminar flow equation. For high Reynolds numbers Re > 4000, the fluid flow is turbulent and the Darcy friction factor should be calculated using one of the turbulent flow equations. In the transition region 2000 < Re < 4000, the flow is unstable and the friction loss cannot be reliably calculated. The minor loss K factor is used to account for pipeline fittings such as bends, tees, valves etc..

The calculators use the Darcy-Weisbach pressure loss equation. The Fanning friction factor is used with the Fanning pressure loss equation. The transmission factors are commonly used for gas flow. The results for the Darcy and Fanning equations are identical provided that the correct friction factor is used.

Change Module :

Related Modules :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : Single Phase Liquid Pipeline Pressure Loss From Moody Diagram [FREE]   ±

Calculate liquid pipeline outlet pressure from flow rate and diameter using the Moody diagram.

The Moody diagram combines the Hagen-Poiseuille laminar flow equation with the Colebrook White turbulent flow equation (either the original Colebrook White equation or the modified Colebrook White equation).

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • visctype : Viscosity Type
    • μu : User Defined Dynamic Viscosity
    • νu : User Defined Kinematic Viscosity
  • voltype : Fluid Flow Rate Type
    • Qu : User Defined Volume Flow Rate
    • Mu : User Defined Mass Flow Rate
    • Vu : User Defined Fluid Velocity
    • Reu : User Defined Reynolds Number
  • rfactype : Pipe Internal Roughness Type
    • ru : User Defined Surface Roughness
    • rru : User Defined Relative Roughness
  • fdtype : Darcy Friction Factor Type
    • fdu : User Defined Darcy Friction Factor
  • ρ : Fluid Density
  • L : Pipe Length
  • K : Minor Loss K Factor
  • zi : Inlet Elevation Relative To Datum
  • zo : Outlet Elevation Relative To Datum
  • Pi : Inlet Pressure

Tool Output

  • ΔP : Friction Pressure Loss
  • μ : Dynamic Viscosity
  • ID : Inside Diameter
  • M : Mass Flowrate
  • Po : Outlet Pressure
  • Q : Volume Flowrate
  • Re : Reynolds Number
  • V : Fluid Velocity
  • cvg : Convergence Factor (≅ 1)
  • fd : Darcy Friction Factor
  • ff : Fanning Friction Factor
  • rr : Surface Roughness Ratio
  • td : Darcy Transmission Factor
  • tf : Fanning Transmission Factor

CALCULATOR : Single Phase Liquid Pipeline Pressure Loss From Prandtl Nikuradse Blasius Colebrook Miller Konakov And Von Karman Equation [FREE]   ±

Calculate liquid pipeline outlet pressure from flow rate and diameter.

The Darcy-Weisbach friction factor may be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation, the modified Colebrook White equation, the Prandtl Nikuradse smooth pipe equation, the Blasius smooth pipe equation, the Colebrook smooth pipe equation, the Miller smooth pipe equation, the Konakov smooth pipe equation, the Von Karman rough pipe equation, or user defined.

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • visctype : Viscosity Type
    • μu : User Defined Dynamic Viscosity
    • νu : User Defined Kinematic Viscosity
  • voltype : Fluid Flow Rate Type
    • Qu : User Defined Volume Flow Rate
    • Mu : User Defined Mass Flow Rate
    • Vu : User Defined Fluid Velocity
    • Reu : User Defined Reynolds Number
  • rfactype : Pipe Internal Roughness Type
    • ru : User Defined Surface Roughness
    • rru : User Defined Relative Roughness
  • fdtype : Darcy Friction Factor Type
    • fdu : User Defined Darcy Friction Factor
  • ρ : Fluid Density
  • L : Pipe Length
  • K : Minor Loss K Factor
  • zi : Inlet Elevation Relative To Datum
  • zo : Outlet Elevation Relative To Datum
  • Pi : Inlet Pressure

Tool Output

  • ΔP : Friction Pressure Loss
  • μ : Dynamic Viscosity
  • ID : Inside Diameter
  • M : Mass Flowrate
  • Po : Outlet Pressure
  • Q : Volume Flowrate
  • Re : Reynolds Number
  • V : Fluid Velocity
  • cvg : Convergence Factor (≅ 1)
  • fd : Darcy Friction Factor
  • ff : Fanning Friction Factor
  • rr : Surface Roughness Ratio
  • td : Darcy Transmission Factor
  • tf : Fanning Transmission Factor

CALCULATOR : Water Pipeline Pressure Loss From Hazen Williams Equation [FREE]   ±

Calculate water pipeline outlet pressure from flow rate and diameter using the Hazen-Williams equation.

The Hazen Williams equation was developed for water pipelines. The Hazen Williams roughness coefficient C can either use predefined values, or user defined.

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • voltype : Fluid Flow Rate Type
    • Qu : User Defined Volume Flow Rate
    • Mu : User Defined Mass Flow Rate
    • Vu : User Defined Fluid Velocity
  • cfactype : Pipe Internal Roughness Type
    • Cu : User Defined Pipe Internal Roughness Factor
  • ρ : Fluid Density
  • L : Pipe Length
  • zi : Inlet Elevation Relative To Datum
  • zo : Outlet Elevation Relative To Datum
  • Pi : Inlet Pressure

Tool Output

  • ΔP : Friction Pressure Loss
  • C : Hazen Williams Roughness Factor
  • ID : Inside Diameter
  • M : Mass Flowrate
  • Po : Outlet Pressure
  • Q : Volume Flowrate
  • V : Fluid Velocity
  • fd : Equivalent Darcy Friction Factor
  • r : Hydraulic Radius
  • s : Hydraulic Grade Line Slope (ΔH/L)

CALCULATOR : Water Pipeline Pressure Loss From Moody Diagram [FREE]   ±

Calculate water pipeline outlet pressure from volume flow rate and diameter using the Moody diagram.

The Darcy-Weisbach friction factor may be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation, the modified Colebrook White equation, or may be user defined. The water properties can be set for fresh water or salt water.

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • wtype : Water Type
  • voltype : Fluid Flow Rate Type
    • Qu : User Defined Volume Flow Rate
    • Mu : User Defined Mass Flow Rate
    • Vu : User Defined Fluid Velocity
    • Reu : User Defined Reynolds Number
  • rfactype : Pipe Internal Roughness Type
    • ru : User Defined Surface Roughness
    • rru : User Defined Relative Roughness
  • fdtype : Darcy Friction Factor Type
    • fdu : User Defined Darcy Friction Factor
  • L : Pipe Length
  • K : Minor Loss K Factor
  • zi : Inlet Elevation Relative To Datum
  • zo : Outlet Elevation Relative To Datum
  • Pi : Inlet Pressure

Tool Output

  • ΔP : Friction Pressure Loss
  • μ : Water Dynamic Viscosity
  • ρ : Water Density
  • ID : Inside Diameter
  • M : Mass Flowrate
  • Po : Outlet Pressure
  • Q : Volume Flowrate
  • Re : Reynolds Number
  • V : Fluid Velocity
  • cvg : Convergence Factor (≅ 1)
  • fd : Darcy Friction Factor
  • ff : Fanning Friction Factor
  • rr : Surface Roughness Ratio
  • td : Darcy Transmission Factor
  • tf : Fanning Transmission Factor

CALCULATOR : Single Phase Liquid Pipeline Pressure Loss From AGA Equation [FREE]   ±

Calculate liquid pipeline outlet pressure from volume flow rate and diameter using the AGA equation.

The AGA equation was developed for hydrocarbon pipelines. Minor losses are calculated from the pipe bend index (bend degrees per mile).

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • visctype : Viscosity Type
    • μu : User Defined Dynamic Viscosity
    • νu : User Defined Kinematic Viscosity
  • voltype : Fluid Flow Rate Type
    • Qu : User Defined Volume Flow Rate
    • Mu : User Defined Mass Flow Rate
    • Vu : User Defined Fluid Velocity
    • Reu : User Defined Reynolds Number
  • rfactype : Pipe Internal Roughness Type
  • dfactype : AGA Drag Factor Type
    • θu : User Defined Total Bend Angle
    • BIu : User Defined Bend Index
    • Dfu : User Defined Pipe Drag Factor
  • fdtype : Darcy Friction Factor Type
    • fdu : User Defined Darcy Friction Factor
  • ρ : Fluid Density
  • L : Pipe Length
  • zi : Inlet Elevation Relative To Datum
  • zo : Outlet Elevation Relative To Datum
  • Pi : Inlet Pressure

Tool Output

  • ΔP : Friction Pressure Loss
  • μ : Dynamic Viscosity
  • Df : AGA Pipe Drag Factor
  • ID : Inside Diameter
  • M : Mass Flowrate
  • Po : Outlet Pressure
  • Q : Volume Flowrate
  • Re : Reynolds Number
  • V : Fluid Velocity
  • cvg : Convergence Factor (≅ 1)
  • fd : Darcy Friction Factor
  • ff : Fanning Friction Factor
  • rr : Surface Roughness Ratio
  • td : Darcy Transmission Factor
  • tf : Fanning Transmission Factor

CALCULATOR : Single Phase Liquid Pipeline Pressure Loss General [FREE]   ±

Calculate general liquid pipeline outlet pressure from flow rate and diameter using the Moody diagram.

The Moody diagram combines the Hagen-Poiseuille laminar flow equation with the Colebrook White turbulent flow equation (either the original Colebrook White equation or the modified Colebrook White equation).

Tool Input

  • fdtype : Darcy Friction Factor Type
    • fdu : User Defined Darcy Friction Factor
  • ρ : Fluid Density
  • ID : Pipe Inside Diameter
  • r : Pipe Inside Surface Roughness
  • L : Pipe Length
  • K : Minor Loss K Factor
  • zi : Inlet Elevation Relative To Datum
  • zo : Outlet Elevation Relative To Datum
  • Pi : Inlet Pressure
  • μ : Dynamic Viscosity
  • Q : Volume Flowrate

Tool Output

  • ΔP : Friction Pressure Loss
  • M : Mass Flowrate
  • Po : Outlet Pressure
  • Re : Reynolds Number
  • V : Fluid Velocity
  • cvg : Convergence Factor (≅ 1)
  • fd : Darcy Friction Factor
  • rr : Surface Roughness Ratio

CALCULATOR : Single Phase Liquid Pipeline Darcy Friction Factor [FREE]   ±

Calculate liquid pipeline Darcy Weisbach friction factor from Renolds number and pipe roughness.

The Darcy-Weisbach friction factor may be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation, the modified Colebrook White equation, the Prandtl Nikuradse smooth pipe equation, the Blasius smooth pipe equation, the Colebrook smooth pipe equation, the Miller smooth pipe equation, the Konakov smooth pipe equation, the Von Karman rough pipe equation, or user defined.

The Fanning friction is equal to the Darcy friction factor divided by four. The transmission factor equals the inverse of the square root of the friction factor.

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • visctype : Viscosity Type
    • μu : User Defined Dynamic Viscosity
    • νu : User Defined Kinematic Viscosity
  • voltype : Fluid Flow Rate Type
    • Qu : User Defined Volume Flow Rate
    • Mu : User Defined Mass Flow Rate
    • Vu : User Defined Fluid Velocity
    • Reu : User Defined Reynolds Number
  • rfactype : Pipe Internal Roughness Type
    • ru : User Defined Surface Roughness
    • rru : User Defined Relative Roughness
  • fdtype : Darcy Friction Factor Type
    • fu : User Defined Darcy Friction Factor
  • ρ : Fluid Density

Tool Output

  • μ : Dynamic Viscosity
  • ID : Inside Diameter
  • M : Mass Flowrate
  • Q : Volume Flowrate
  • Re : Reynolds Number
  • V : Fluid Velocity
  • cvg : Convergence Factor (≅ 1)
  • fd : Darcy Friction Factor
  • ff : Fanning Friction Factor
  • rr : Surface Roughness Ratio
  • td : Darcy Transmission Factor
  • tf : Fanning Transmission Factor

CALCULATOR : Single Phase Liquid Pipeline Equivalent Length And K Factor [FREE]   ±

Calculate single phase liquid pipeline minor loss factors through a fitting (valve, tee, reducer, enlarger etc...).

Enter the minor loss factor as either the K factor, the equivalent length, the equivalent diameters, or the flow coefficient (Av, Kv, Cv units). Change flow coefficient units on the setup page. The Darcy friction factor is required to calculate the equivalent length and equivalent diameters. Use either the laminar flow equation, the original Colebrook White equation, or the modified Colebrook White equation from the Moody diagram. The Darcy friction factor can also be user defined.

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • visctype : Viscosity Type
    • μu : User Defined Dynamic Viscosity
    • νu : User Defined Kinematic Viscosity
  • voltype : Fluid Flow Rate Type
    • Qu : User Defined Volume Flow Rate
    • Mu : User Defined Mass Flow Rate
    • Vu : User Defined Fluid Velocity
    • Reu : User Defined Reynolds Number
  • rfactype : Pipe Internal Roughness Type
    • ru : User Defined Surface Roughness
    • rru : User Defined Relative Roughness
  • kfactype : Minor Loss Factor Type
    • ku : User Defined Minor Loss K Factor
    • lu : User Defined Minor Loss Length
    • lodu : User Defined Minor Loss Diameters
    • fvu : User Defined Minor Loss Flow Coefficient
  • fdtype : Darcy Friction Factor Type
    • fdu : User Defined Darcy Friction Factor
  • ρ : Fluid Density

Tool Output

  • μ : Dynamic Viscosity
  • ID : Inside Diameter
  • K : Minor Loss K Factor
  • M : Mass Flowrate
  • Q : Volume Flowrate
  • Re : Reynolds Number
  • V : Fluid Velocity
  • cvg : Convergence Factor (≅ 1)
  • fd : Darcy Friction Factor
  • ff : Fanning Friction Factor
  • fv : Minor Loss Flow Coefficient
  • l : Minor Loss Equivalent Length
  • lod : Minor Loss Diameters
  • rr : Surface Roughness Ratio
  • td : Darcy Transmission Factor
  • tf : Fanning Transmission Factor