Calculate liquid pipeline Darcy Weisbach friction factor from Renolds number and pipe roughness.
The Darcy-Weisbach friction factor may be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation, the modified Colebrook White equation, the Prandtl Nikuradse smooth pipe equation, the Blasius smooth pipe equation, the Colebrook smooth pipe equation, the Miller smooth pipe equation, the Konakov smooth pipe equation, the Von Karman rough pipe equation, or user defined.
The Fanning friction is equal to the Darcy friction factor divided by four. The transmission factor equals the inverse of the square root of the friction factor.
Tool Input
- schdtype : Pipe Schedule Type
- diamtype : Pipe Diameter Type
- ODu : User Defined Outside Diameter
- IDu : User Defined Inside Diameter
- wtntype : Wall Thickness Type
- tnu : User Defined Wall Thickness
- visctype : Viscosity Type
- μu : User Defined Dynamic Viscosity
- νu : User Defined Kinematic Viscosity
- voltype : Fluid Flow Rate Type
- Qu : User Defined Volume Flow Rate
- Mu : User Defined Mass Flow Rate
- Vu : User Defined Fluid Velocity
- Reu : User Defined Reynolds Number
- rfactype : Pipe Internal Roughness Type
- ru : User Defined Surface Roughness
- rru : User Defined Relative Roughness
- fdtype : Darcy Friction Factor Type
- fu : User Defined Darcy Friction Factor
- ρ : Fluid Density
Tool Output
- μ : Dynamic Viscosity
- ID : Inside Diameter
- M : Mass Flowrate
- Q : Volume Flowrate
- Re : Reynolds Number
- V : Fluid Velocity
- cvg : Convergence Factor (≅ 1)
- fd : Darcy Friction Factor
- ff : Fanning Friction Factor
- rr : Surface Roughness Ratio
- td : Darcy Transmission Factor
- tf : Fanning Transmission Factor