Pipeng Toolbox : Liquid Duct Pressure Drop Calculators Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Liquid Rectangular Duct Pressure Loss

Calculate single phase liquid flow in a rectangular duct.

The Moody diagram is valid for rectangular ducts provided that the Reynolds number is calculated from the hydraulic diameter (equal to four times the cross section area divided by the perimeter). The Darcy friction factor can be calculated from the Moody diagram using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation or the modified Colebrook White equation. The minor loss K factor is used to account for pipeline fittings such as bends, tees, valves etc.. Change flow coefficient units on the setup page (Av, Kv, or Cv).

Change Module :

Related Modules :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : Single Phase Liquid Rectangular Duct Pressure Loss From Moody Diagram [FREE]   ±

Calculate liquid rectangular duct volume flow rate from outlet pressure and hydraulic diameter using the Moody diagram.

The Moody diagram combines the Hagen-Poiseuille laminar flow equation with the Colebrook White turbulent flow equation (either the original Colebrook White equation or the modified Colebrook White equation). The hydraulic diameter is equal to four times the cross section area divided by the perimeter.

Tool Input

  • visctype : Viscosity Type
    • μu : User Defined Dynamic Viscosity
    • νu : User Defined Kinematic Viscosity
  • voltype : Fluid Flow Rate Type
    • Qu : User Defined Volume Flow Rate
    • Mu : User Defined Mass Flow Rate
    • Vu : User Defined Fluid Velocity
    • Reu : User Defined Reynolds Number
  • rfactype : Duct Internal Roughness Type
    • ru : User Defined Surface Roughness
    • rru : User Defined Relative Roughness
  • fdtype : Darcy Friction Factor Type
    • fdu : User Defined Darcy Friction Factor
  • ρ : Fluid Density
  • W : Duct Width
  • H : Duct Height
  • L : Duct Length
  • K : Minor Loss K Factor
  • zi : Inlet Elevation Relative To Datum
  • zo : Outlet Elevation Relative To Datum
  • Pi : Inlet Pressure

Tool Output

  • ΔP : Friction Pressure Loss
  • μ : Dynamic Viscosity
  • ID : Duct Hydraulic Diameter
  • M : Mass Flowrate
  • Po : Outlet Pressure
  • Q : Volume Flowrate
  • Re : Reynolds Number
  • V : Fluid Velocity
  • cvg : Convergence Factor (≅ 1)
  • fd : Darcy Friction Factor
  • ff : Fanning Friction Factor
  • rr : Surface Roughness Ratio
  • td : Darcy Transmission Factor
  • tf : Fanning Transmission Factor

CALCULATOR : Single Phase Liquid Rectangular Duct Darcy Friction Factor [FREE]   ±

Calculate liquid rectangular duct Darcy Weisbach friction factor from Renolds number and pipe roughness.

The Darcy-Weisbach friction factor may be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation, the modified Colebrook White equation, the Prandtl Nikuradse smooth pipe equation, the Blasius smooth pipe equation, the Colebrook smooth pipe equation, the Miller smooth pipe equation, the Konakov smooth pipe equation, the Von Karman rough pipe equation, or user defined.

The Fanning friction is equal to the Darcy friction factor divided by four. The transmission factor equals the inverse of the square root of the friction factor. The hydraulic diameter is equal to four times the cross section area divided by the perimeter.

Tool Input

  • visctype : Viscosity Type
    • μu : User Defined Dynamic Viscosity
    • νu : User Defined Kinematic Viscosity
  • voltype : Fluid Flow Rate Type
    • Qu : User Defined Volume Flow Rate
    • Mu : User Defined Mass Flow Rate
    • Vu : User Defined Fluid Velocity
    • Reu : User Defined Reynolds Number
  • rfactype : Duct Internal Roughness Type
    • ru : User Defined Surface Roughness
    • rru : User Defined Relative Roughness
  • fdtype : Darcy Friction Factor Type
    • fdu : User Defined Darcy Friction Factor
  • ρ : Fluid Density
  • W : Duct Width
  • H : Duct Height

Tool Output

  • μ : Dynamic Viscosity
  • ID : Duct Hydraulic Diameter
  • M : Mass Flowrate
  • Q : Volume Flowrate
  • Re : Reynolds Number
  • V : Fluid Velocity
  • cvg : Convergence Factor (≅ 1)
  • fd : Darcy Friction Factor
  • ff : Fanning Friction Factor
  • rr : Surface Roughness Ratio
  • td : Darcy Transmission Factor
  • tf : Fanning Transmission Factor

CALCULATOR : Single Phase Liquid Rectangular Duct Equivalent Length And K Factor [FREE]   ±

Calculate single phase liquid rectangular duct minor loss factors through a fitting (valve, tee, reducer, enlarger etc...).

The Darcy friction factor is calculated using the hydraulic diameter, equal to four times the cross section area divided by the perimeter. Select either the laminar flow equation, the original Colebrook White equation, or the modified Colebrook White equation from the Moody diagram. Enter the minor loss factor as either the K factor, the equivalent length, the equivalent diameters, or the flow coefficient (Av, Kv, Cv units). Change flow coefficient units on the setup page.

Tool Input

  • visctype : Viscosity Type
    • μu : User Defined Dynamic Viscosity
    • νu : User Defined Kinematic Viscosity
  • voltype : Fluid Flow Rate Type
    • Qu : User Defined Volume Flow Rate
    • Mu : User Defined Mass Flow Rate
    • Vu : User Defined Fluid Velocity
    • Reu : User Defined Reynolds Number
  • rfactype : Duct Internal Roughness Type
    • ru : User Defined Surface Roughness
    • rru : User Defined Relative Roughness
  • kfactype : Minor Pressure Loss Type
    • ku : User Defined Minor Loss K Factor
    • lu : User Defined Minor Loss Length
    • lodu : User Defined Minor Loss Diameters LoD
    • fvu : User Defined Minor Loss Flow Coefficient
  • fdtype : Darcy Friction Factor Type
    • fdu : User Defined Darcy Friction Factor
  • ρ : Fluid Density
  • W : Duct Width
  • H : Duct Height

Tool Output

  • μ : Dynamic Viscosity
  • ID : Duct Hydraulic Diameter
  • K : Minor Loss K Factor
  • M : Mass Flowrate
  • Q : Volume Flowrate
  • Re : Reynolds Number
  • V : Fluid Velocity
  • cvg : Convergence Factor (≅ 1)
  • fd : Darcy Friction Factor
  • ff : Fanning Friction Factor
  • fv : Minor Loss Flow Coefficient
  • l : Minor Loss Equivalent Length
  • lod : Minor Loss Diameters
  • rr : Surface Roughness Ratio
  • td : Darcy Transmission Factor
  • tf : Fanning Transmission Factor