Calculate pressure loss for single phase gas pipelines using the Darcy Weisbach version of the Moody Diagram.
For low Reynolds numbers Re < 2000, the fluid flow is laminar and the Darcy friction factor should be calculated using the Hagen-Poiseuille laminar flow equation. For high Reynolds numbers Re > 4000, the fluid flow is turbulent and the Darcy friction factor should be calculated using one of the turbulent flow equations. In the transition region 2000 < Re < 4000, the flow is unstable and the friction loss cannot be reliably calculated. The minor loss K factor is used to account for pipeline fittings such as bends, tees, valves etc..
The calculators use the Darcy-Weisbach version of the Moody diagram. The Fanning transmission factor combined with the Fanning equation is commonly used for gas flow. The results for the Darcy and Fanning equations are identical provided that the correct friction factor is used.
The gas specific gravity is the ratio of gas density over the density of dry air at base temperature and pressure. The compressibility factor is assumed to equal 1 at the base conditions. The gas specific gravity is proportional to the gas molar mass.
Links : ± |
CALCULATOR : Single Phase Gas Pipeline Pressure Loss From Moody Diagram [PLUS] ±
Calculate gas pipeline outlet pressure from flow rate and diameter using the Moody diagram. The Moody diagram combines the Hagen-Poiseuille laminar flow equation with the Colebrook White turbulent flow equation (either the original Colebrook White equation or the modified Colebrook White equation). Bends, valves, tees and other pipe fittings should be accounted for using the minor loss K factor. Tool Input- schdtype : Pipe Schedule Type
- diamtype : Pipe Diameter Type
- ODu : User Defined Outside Diameter
- IDu : User Defined Inside Diameter
- wtntype : Wall Thickness Type
- tnu : User Defined Wall Thickness
- fluidtype : Fluid Property Type
- SGu : User Defined Gas Specific Gravity
- μu : User Defined Dynamic Viscosity
- voltype : Fluid Flow Rate Type
- Qfu : User Defined Gas Volume Flow Rate
- Mfu : User Defined Gas Mass Flow Rate
- Ngu : User Defined Gas Mole Flow Rate
- Vfu : User Defined Gas Velocity
- Reu : User Defined Reynolds Number
- rfactype : Pipe Internal Roughness Type
- ru : User Defined Surface Roughness
- rru : User Defined Relative Roughness
- fdtype : Darcy Friction Factor Type
- fdu : User Defined Darcy Friction Factor
- flowtype : Pressure For Fluid Property Calculation
- L : Pipe Length
- K : K Factor
- zi : Inlet Elevation Relative To Datum
- zo : Outlet Elevation Relative To Datum
- Pi : Inlet Pressure
- T : Fluid Temperature
- Z : Compressibility Factor
Tool Output- ΔP : Friction Pressure Loss
- μ : Dynamic Viscosity
- ρ : Fluid Density (At Pf)
- ID : Inside Diameter
- Mf : Mass Flowrate
- Ng : Mole Flow Rate
- Pa : Average Fluid Pressure
- Pf : Pressure For Fluid Property Calculation
- Po : Outlet Pressure
- Qf : Volume Flowrate (At Pf)
- Re : Reynolds Number (At Inlet)
- SG : Gas Specific Gravity
- Vf : Fluid Velocity (At Pf)
- cvg : Convergence Factor (≅ 1)
- es : Elevation Constant
- fd : Darcy Friction Factor
- ff : Fanning Friction Factor
- ls : Length Constant
- rr : Surface Roughness Ratio
- ss : Elevation Exponent
- td : Darcy Transmission Factor
- tf : Fanning Transmission Factor
- vg : Mole Specific Volume (At Pf)
|
CALCULATOR : Single Phase Gas Pipeline Pressure Loss From Prandtl Nikuradse Blasius Colebrook Miller Konakov And Von Karman Equation [PLUS] ±
Calculate general gas pipeline outlet pressure from flow rate and diameter. The pressure loss can be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation, the modified Colebrook White equation, the Prandtl Nikuradse smooth pipe equation, the Blasius smooth pipe equation, the Colebrook smooth pipe equation, the Miller smooth pipe equation, the Konakov smooth pipe equation, the Von Karman rough pipe equation, or user defined friction factor. Bends, valves, tees and other pipe fittings should be accounted for using the minor loss K factor. Tool Input- schdtype : Pipe Schedule Type
- diamtype : Pipe Diameter Type
- ODu : User Defined Outside Diameter
- IDu : User Defined Inside Diameter
- wtntype : Wall Thickness Type
- tnu : User Defined Wall Thickness
- fluidtype : Fluid Property Type
- SGu : User Defined Gas Specific Gravity
- μu : User Defined Dynamic Viscosity
- voltype : Fluid Flow Rate Type
- Qfu : User Defined Gas Volume Flow Rate
- Mfu : User Defined Gas Mass Flow Rate
- Ngu : User Defined Gas Mole Flow Rate
- Vfu : User Defined Gas Velocity
- Reu : User Defined Reynolds Number
- rfactype : Pipe Internal Roughness Type
- ru : User Defined Surface Roughness
- rru : User Defined Relative Roughness
- fdtype : Darcy Friction Factor Type
- fdu : User Defined Darcy Friction Factor
- flowtype : Pressure For Fluid Property Calculation
- L : Pipe Length
- K : K Factor
- zi : Inlet Elevation Relative To Datum
- zo : Outlet Elevation Relative To Datum
- Pi : Inlet Pressure
- T : Fluid Temperature
- Z : Compressibility Factor
Tool Output- ΔP : Friction Pressure Loss
- μ : Dynamic Viscosity
- ρ : Fluid Density (At Pf)
- ID : Inside Diameter
- Mf : Mass Flowrate
- Ng : Mole Flow Rate
- Pa : Average Fluid Pressure
- Pf : Pressure For Fluid Property Calculation
- Po : Outlet Pressure
- Qf : Volume Flowrate (At Pf)
- Re : Reynolds Number (At Inlet)
- SG : Gas Specific Gravity
- Vf : Fluid Velocity (At Pf)
- cvg : Convergence Factor (≅ 1)
- es : Elevation Constant
- fd : Darcy Friction Factor
- ff : Fanning Friction Factor
- ls : Length Constant
- rr : Surface Roughness Ratio
- ss : Elevation Exponent
- td : Darcy Transmission Factor
- tf : Fanning Transmission Factor
- vg : Mole Specific Volume (At Pf)
|
CALCULATOR : Single Phase Gas Pipeline Pressure Loss General [FREE] ±
Calculate general gas pipeline outlet pressure from flow rate and diameter using the Moody diagram. The Moody diagram combines the Hagen-Poiseuille laminar flow equation with the Colebrook White turbulent flow equation (either the original Colebrook White equation or the modified Colebrook White equation). Bends, valves, tees and other pipe fittings should be accounted for using the minor loss K factor. Tool Input- fdtype : Darcy Friction Factor Type
- fdu : User Defined Darcy Friction Factor
- flowtype : Pressure For Fluid Property Calculation
- ID : Pipe Inside Diameter
- r : Piipe Internal Roughness
- L : Pipe Length
- K : K Factor
- zi : Inlet Elevation Relative To Datum
- zo : Outlet Elevation Relative To Datum
- Pi : Inlet Pressure
- T : Fluid Temperature
- Z : Compressibility Factor
- SG : Gas Specific Gravity (At Pf)
- μ : Dynamic Viscosity
- Ng : Mole Flow Rate
Tool Output- ΔP : Friction Pressure Loss
- ρ : Fluid Density (At Pf)
- Pa : Average Fluid Pressure
- Pf : Pressure For Fluid Property Calculation
- Po : Outlet Pressure
- Re : Reynolds Number (At Inlet)
- cvg : Convergence Factor (≅ 1)
- fd : Darcy Friction Factor
- rr : Surface Roughness Ratio
- vg : Mole Specific Volume (At Pf)
|
CALCULATOR : Single Phase Gas Pipeline Darcy Friction Factor [PLUS] ±
Calculate gas pipeline Darcy Weisbach friction factor from Reynolds number and pipe roughness. The Darcy-Weisbach friction factor can be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation, the modified Colebrook White equation, the Prandtl Nikuradse smooth pipe equation, the Blasius smooth pipe equation, the Colebrook smooth pipe equation, the Miller smooth pipe equation, the Konakov smooth pipe equation, the Von Karman rough pipe equation, or user defined. The Fanning friction is equal to the Darcy friction factor divided by four. The transmission factor equals the inverse of the square root of the friction factor. Tool Input- schdtype : Pipe Schedule Type
- diamtype : Pipe Diameter Type
- ODu : User Defined Outside Diameter
- IDu : User Defined Inside Diameter
- wtntype : Wall Thickness Type
- tnu : User Defined Wall Thickness
- fluidtype : Fluid Property Type
- SGu : User Defined Gas Specific Gravity
- μu : User Defined Dynamic Viscosity
- voltype : Fluid Flow Rate Type
- Qfu : User Defined Gas Volume Flow Rate
- Mfu : User Defined Gas Mass Flow Rate
- Ngu : User Defined Gas Mole Flow Rate
- Vfu : User Defined Gas Velocity
- Reu : User Defined Reynolds Number
- rfactype : Pipe Internal Roughness Type
- ru : User Defined Surface Roughness
- rru : User Defined Relative Roughness
- fdtype : Darcy Friction Factor Type
- fdu : User Defined Darcy Friction Factor
- Pi : Inlet Pressure
- T : Fluid Temperature
- Z : Compressibility Factor
Tool Output- μ : Dynamic Viscosity
- ρ : Fluid Density
- ID : Inside Diameter
- Mf : Mass Flowrate
- Ng : Mole Flow Rate
- Qf : Volume Flowrate
- Re : Reynolds Number
- SG : Gas Specific Gravity
- Td : Darcy Transmission Factor
- Tf : Fanning Transmission Factor
- Vf : Fluid Velocity
- cvg : Convergence Factor (≅ 1)
- fd : Darcy Friction Factor
- ff : Fanning Friction Factor
- rr : Surface Roughness Ratio
- vg : Mole Specific Volume
|
CALCULATOR : Single Phase Gas Pipeline Equivalent Length And K Factor [PLUS] ±
Calculate single phase gas pipeline minor loss factors through a fitting (valve, tee, reducer, enlarger etc...). The Darcy friction factor is required to calculate the equivalent length and equivalent diameters. Use either the laminar flow equation, the original Colebrook White equation, or the modified Colebrook White equation from the Moody diagram. The Darcy friction factor can also be user defined. Elevation is ignored. Enter the minor loss factor as either the K factor, the equivalent length, the equivalent diameters, or the flow coefficient (Av, Kv, Cv units). Change flow coefficient units on the setup page. Tool Input- schdtype : Pipe Schedule Type
- diamtype : Pipe Diameter Type
- ODu : User Defined Outside Diameter
- IDu : User Defined Inside Diameter
- wtntype : Wall Thickness Type
- tnu : User Defined Wall Thickness
- fluidtype : Fluid Property Type
- SGu : User Defined Gas Specific Gravity
- μu : User Defined Dynamic Viscosity
- voltype : Fluid Flow Rate Type
- Qfu : User Defined Gas Volume Flow Rate
- Mfu : User Defined Gas Mass Flow Rate
- Ngu : User Defined Gas Mole Flow Rate
- Vfu : User Defined Gas Velocity
- Reu : User Defined Reynolds Number
- rfactype : Pipe Internal Roughness Type
- ru : User Defined Surface Roughness
- rru : User Defined Relative Roughness
- kfactype : Minor Pressure Loss Type
- ku : User Defined Minor Loss K Factor
- lu : User Defined Minor Loss Length
- lodu : User Defined Minor Loss Diameters
- fvu : User Defined Minor Loss Flow Coefficient
- fdtype : Darcy Friction Factor Type
- fdu : User Defined Darcy Friction Factor
- Pi : Inlet Pressure
- T : Fluid Temperature
- Z : Compressibility Factor
Tool Output- μ : Dynamic Viscosity
- ρ : Fluid Density
- ID : Inside Diameter
- K : Minor Loss K Factor
- Mf : Mass Flowrate
- Ng : Mole Flow Rate
- Qf : Volume Flowrate
- Re : Reynolds Number
- SG : Gas Specific Gravity
- Vf : Fluid Velocity
- cvg : Convergence Factor (≅ 1)
- fd : Darcy Friction Factor
- ff : Fanning Friction Factor
- fv : Minor Loss Flow Coefficient
- l : Minor Loss Equivalent Length
- lod : Minor Loss Diameters
- rr : Surface Roughness Ratio
- td : Darcy Transmission Factor
- tf : Fanning Transmission Factor
- vg : Mole Specific Volume
|
CALCULATOR : Single Phase Gas Compressibility Factor [FREE] ±
Calculate single phase gas density and compressibility factor from temperature and pressure, and gas properties for selected gases. The gas compressibility factor is calculated from the critical point temperature, critical point temperature, and the accentric factor using either the Peng Robinson, Soave, Redlich Kwong or Van Der Waals equations of state (EOS). The compressibility factor calculation is valid for gas phase only. Use the Result Plot option to plot compressibility factor versus pressure and temperature, compressibility factor versus pressure and equation of state type, or compressibility factor versus temperature and equation of state type. Tool Input- fluidtype : Fluid Type
- SGu : User Defined Gas Specific Gravity
- ωu : User Defined Acentric Factor
- Pcu : User Defined Critical Pressure
- Tcu : User Defined Critical Temperature
- eostype : Equation Of State
- Zu : User Defined Compressibility Factor
- P : Fluid Pressure
- T : Fluid Temperature
Tool Output- ρ : Fluid Density
- ω : Accentric Factor
- Pc : Critical Point Pressure
- Pr : Reduced Pressure
- SG : Gas Specific Gravity Relative To Air
- Tc : Critical Point Temperature
- Tr : Reduced Temperature
- Vm : Molar Volume
- Z : Compressibility Factor
- cvg : Convergence Check
- mw : Fluid Molar Mass
|
CALCULATOR : Single Phase Gas Property [FREE] ±
Calculate single phase gas properties for common gases: argon Ar, n-decane C10H22, ethylene C2H4, ethyl chloride C2H5Cl, ethane C2H6, propene C3H6, propane C3H8, iso-butane C4H10, n-butane C4H10, iso-pentane C5H12, n-pentane C5H12, n-hexane C6H14, n-heptane C7H16, n-octane C8H18, n-nonane C9H20, methyl chloride CH3Cl, methane CH4, chlorine Cl2, carbon monoxide CO, carbon dioxide CO2, hydrogen H2, steam H2O, hydrogen sulphide H2S, hydrogen chloride HCl, helium He, krypton Kr, nitrogen N2, air N2+O2, ammonia NH3, oxygen O2, sulphur dioxide SO2, xenon Xe. Properties include specific heat constant pressure, specific heat constant volume, specific heat ratio, molar mass, gas constant, gas specific gravity, critical point temperature, critical point pressure, and accentric factor. Use the Result Table option to display a table of properties versus gas type. Tool Input- fluidtype : Fluid Type
- Cpu : User Defined Specific Heat Constant Pressure
- Cvu : User Defined Specific Heat Constant Volume
- γu : User Defined Specific Heat Ratio
- SGu : User Defined Specific Gravity
- Pcu : User Defined Critical Point Pressure
- Tcu : User Defined Critical Point Temperature
- ωu : User Defined Accentric Factor
Tool Output- γ : Specific Heat Ratio
- ω : Accentric Factor
- Cp : Fluid Heat Capacity Constant Pressure
- Cv : Fluid Heat Capacity Constant Volume
- Pc : Critical Point Pressure
- R : Gas Constant
- SG : Gas Specific Gravity Relative To Air
- Tc : Critical Point Temperature
- mm : Fluid Molar Mass
|
CALCULATOR : Single Phase Gas Viscosity And Specific Gravity [FREE] ±
Calculate single phase gas density and viscosity for common gases. Calculate kinematic viscosity from dynamic viscosity, or dynamic viscosity from kinematic viscosity. The kinematic viscosity is equal to the dynamic viscosity divided by the density. Change viscosity units on the setup page. The gas compressibility factor is calculated from the critical point temperature, critical point temperature, and the accentric factor using either the Peng Robinson, Soave, Redlich Kwong or Van Der Waals equations of state (EOS). Tool Input- fluidtype : Fluid Type
- Pcu : User Defined Critical Point Pressure
- Tcu : User Defined Critical Point Temperature
- ωu : User Defined Accentric Factor
- SGu : User Defined Gas Specific Gravity
- eostype : Equation Of State Type
- Zu : User Defined Gas Compressibility Factor
- visctype : Viscosity Type
- μu : User Defined Dynamic Viscosity
- νu : User Defined Kinematic Viscosity
- P : Fluid Pressure
- T : Fluid Temperature
Tool Output- μ : Fluid Dynamic Viscosity
- ν : Fluid Kinematic Viscosity
- ρ : Fluid Density
- ω : Accentric Factor
- Pc : Critical Point Pressure
- Rg : Specific Gas Constant
- SG : Gas Specific Gravity
- Tc : Critical Point Temperature
- Vm : Molar Volume
- Z : Compressibility Factor
- cvg : Convergence Check
- mmg : Gas Molar Mass
|