Pipeng Toolbox : Gas Rectangular Duct Calculators Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Gas Rectangular Duct Pressure Loss

Calculate single phase gas flow in a rectangular duct.

The Darcy friction factor can be calculated from the Moody diagram using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation or the modified Colebrook White equation. The Moody diagram can be used for rectangular ducts if the Reynolds number is calculated from the hydraulic diameter (equals four times the cross section area divided by the perimeter). Minor losses can be calculated using either the K factor, an equivalent length, equivalent diameters, or the flow coefficient. Change flow coefficient units on the setup page (Av, Kv, or Cv).

Change Module :

Related Modules :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : Single Phase Gas Rectangular Duct Pressure Loss From Moody Diagram [PLUS]   ±

Calculate gas rectangular duct outlet pressure from flow rate and hydraulic diameter using the Moody diagram.

The Darcy-Weisbach friction factor can be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation, the modified Colebrook White equation, or can be user defined. The hydraulic diameter is equal to four times the cross section area divided by the perimeter. Bends, valves, tees and other pipe fittings should be accounted for using the minor loss K factor.

Tool Input

  • fluidtype : Fluid Property Type
    • SGu : User Defined Gas Specific Gravity
    • μu : User Defined Dynamic Viscosity
  • voltype : Fluid Flow Rate Type
    • Qfu : User Defined Gas Volume Flow Rate
    • Mfu : User Defined Gas Mass Flow Rate
    • Ngu : User Defined Gas Mole Flow Rate
    • Vfu : User Defined Gas Velocity
    • Reu : User Defined Reynolds Number
  • rfactype : Pipe Internal Roughness Type
    • ru : User Defined Surface Roughness
    • rru : User Defined Relative Roughness
  • fdtype : Darcy Friction Factor Type
    • fdu : User Defined Darcy Friction Factor
  • flowtype : Pressure For Fluid Property Calculation
  • W : Duct Width
  • H : Duct Height
  • L : Pipe Length
  • K : K Factor
  • zi : Inlet Elevation Relative To Datum
  • zo : Outlet Elevation Relative To Datum
  • Pi : Inlet Pressure
  • T : Fluid Temperature
  • Z : Compressibility Factor

Tool Output

  • ΔP : Friction Pressure Loss
  • μ : Dynamic Viscosity
  • ρ : Fluid Density (At Pf)
  • ID : Hydraulic Diameter
  • Mf : Mass Flowrate
  • Ng : Mole Flow Rate
  • Pa : Average Fluid Pressure
  • Pf : Pressure For Fluid Property Calculation
  • Po : Outlet Pressure
  • Qf : Volume Flowrate (At Pf)
  • Re : Reynolds Number (At Inlet)
  • SG : Gas Specific Gravity
  • Vf : Fluid Velocity (At Pf)
  • cvg : Convergence Factor (≅ 1)
  • es : Elevation Constant
  • fd : Darcy Friction Factor
  • ff : Fanning Friction Factor
  • ls : Length Constant
  • rr : Surface Roughness Ratio
  • ss : Elevation Exponent
  • td : Darcy Transmission Factor
  • tf : Fanning Transmission Factor
  • vg : Mole Specific Volume (At Pf)

CALCULATOR : Single Phase Gas Rectangular Duct Darcy Friction Factor [PLUS]   ±

Calculate gas rectangular duct Darcy Weisbach friction factor from Reynolds number and pipe roughness.

The Darcy-Weisbach friction factor can be calculated using either the Hagen-Poiseuille laminar flow equation, the original Colebrook White equation, the modified Colebrook White equation, the Prandtl Nikuradse smooth pipe equation, the Blasius smooth pipe equation, the Colebrook smooth pipe equation, the Miller smooth pipe equation, the Konakov smooth pipe equation, the Von Karman rough pipe equation, or user defined.

The Fanning friction is equal to the Darcy friction factor divided by four. The transmission factor equals the inverse of the square root of the friction factor. The hydraulic diameter is equal to four times the cross section area divided by the perimeter.

Tool Input

  • fluidtype : Fluid Property Type
    • SGu : User Defined Gas Specific Gravity
    • μu : User Defined Dynamic Viscosity
  • voltype : Fluid Flow Rate Type
    • Qfu : User Defined Gas Volume Flow Rate
    • Mfu : User Defined Gas Mass Flow Rate
    • Ngu : User Defined Gas Mole Flow Rate
    • Vfu : User Defined Gas Velocity
    • Reu : User Defined Reynolds Number
  • rfactype : Pipe Internal Roughness Type
    • ru : User Defined Surface Roughness
    • rru : User Defined Relative Roughness
  • fdtype : Darcy Friction Factor Type
    • fdu : User Defined Darcy Friction Factor
  • W : Duct Width
  • H : Duct Height
  • Pi : Inlet Pressure
  • T : Fluid Temperature
  • Z : Compressibility Factor

Tool Output

  • μ : Dynamic Viscosity
  • ρ : Fluid Density
  • ID : Inside Diameter
  • Mf : Mass Flowrate
  • Ng : Mole Flow Rate
  • Qf : Volume Flowrate
  • Re : Reynolds Number
  • SG : Gas Specific Gravity
  • Td : Darcy Transmission Factor
  • Tf : Fanning Transmission Factor
  • Vf : Fluid Velocity
  • cvg : Convergence Factor (≅ 1)
  • fd : Darcy Friction Factor
  • ff : Fanning Friction Factor
  • rr : Surface Roughness Ratio
  • vg : Mole Specific Volume

CALCULATOR : Single Phase Gas Rectangular Duct Equivalent Length And K Factor [PLUS]   ±

Calculate single phase gas rectangular duct minor loss factors through a fitting (valve, tee, reducer, enlarger etc...).

Minor loss factors include the K factor, the equivalent length, the equivalent diameters, and the flow coefficient (Av, Kv, Cv units). Change flow coefficient units on the setup page. Elevation is ignored. The Darcy friction factor is calculated using the hydraulic diameter, equal to four times the cross section area divided by the perimeter. Select either the laminar flow equation, the original Colebrook White equation, or the modified Colebrook White equation from the Moody diagram.

Tool Input

  • fluidtype : Fluid Property Type
    • SGu : User Defined Gas Specific Gravity
    • μu : User Defined Dynamic Viscosity
  • voltype : Fluid Flow Rate Type
    • Qfu : User Defined Gas Volume Flow Rate
    • Mfu : User Defined Gas Mass Flow Rate
    • Ngu : User Defined Gas Mole Flow Rate
    • Vfu : User Defined Gas Velocity
    • Reu : User Defined Reynolds Number
  • rfactype : Pipe Internal Roughness Type
    • ru : User Defined Surface Roughness
    • rru : User Defined Relative Roughness
  • kfactype : Minor Loss Factor Type
    • ku : User Defined Minor Loss K Factor
    • lu : User Defined Minor Loss Length
    • lodu : User Defined Minor Loss Diameters
    • fvu : User Defined Minor Loss Flow Coefficient
  • fdtype : Darcy Friction Factor Type
    • fdu : User Defined Darcy Friction Factor
  • W : Duct Width
  • H : Duct Height
  • Pi : Inlet Pressure
  • T : Fluid Temperature
  • Z : Compressibility Factor

Tool Output

  • μ : Dynamic Viscosity
  • ρ : Fluid Density
  • ID : Hydraulic Diameter
  • K : Minor Loss K Factor
  • Mf : Mass Flowrate
  • Ng : Mole Flow Rate
  • Qf : Volume Flowrate
  • Re : Reynolds Number
  • SG : Gas Specific Gravity
  • Vf : Fluid Velocity
  • cvg : Convergence Factor (≅ 1)
  • fd : Darcy Friction Factor
  • ff : Fanning Friction Factor
  • fv : Minor Loss Flow Coefficient
  • l : Minor Loss Equivalent Length
  • lod : Minor Loss Diameters
  • rr : Surface Roughness Ratio
  • td : Darcy Transmission Factor
  • tf : Fanning Transmission Factor
  • vg : Mole Specific Volume