Pipeng Toolbox : API 14E General Equation Calculators Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

API RP 14E General Gas Piping Pressure Loss Equation

Calculate API RP 14E gas piping pressure loss from the general equation.

The pressure loss is calculated using the Darcy-Weisbach form of the Moody diagram. For low Reynolds numbers Re < 2000, the fluid flow is laminar and the Hagen-Poiseuille laminar flow option should be used. In the transition region 2000 < Re < 4000, the flow is unstable and cannot be reliably calculated. For turbulent flow (Re > 4000), either the original Colebrook White equation or the modified Colebrook White equation can be used. Minor losses are used to account for pipeline fittings such as bends, tees, valves etc.

Reference : API 14E Recommended Practice For Design and Installation of Offshore Production Platform Piping Systems

Change Module :

Related Modules :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : API RP 14E Section 2.4 Gas Piping Outlet Pressure From General Equation [PLUS]   ±

Calculate gas piping outlet pressure from the general equation using the Moody diagram (API RP 14E section 2.4).

The Moody diagram can be used to calculate laminar flow (Hagen-Poiseuille laminar flow equation), and turbulent flow (the original Colebrook White equation or the modified Colebrook White equation). The Darcy-Weisbach version of the Moody diagram is used rather than the Fanning version.

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • fluidtype : Fluid Property Type
    • SGu : User Defined Gas Specific Gravity
    • μu : User Defined Dynamic Viscosity
  • voltype : Fluid Flow Rate Type
    • Qfu : User Defined Gas Volume Flow Rate
    • Mfu : User Defined Gas Mass Flow Rate
    • Ngu : User Defined Gas Mole Flow Rate
    • Vfu : User Defined Gas Velocity
    • Reu : User Defined Reynolds Number
  • rfactype : Pipe Internal Roughness Type
    • ru : User Defined Surface Roughness
    • rru : User Defined Relative Roughness
  • fdtype : Darcy Friction Factor Type
    • fdu : User Defined Darcy Friction Factor
  • flowtype : Pressure For Fluid Property Calculation
  • L : Pipe Length
  • K : K Factor
  • zi : Inlet Elevation Relative To Datum
  • zo : Outlet Elevation Relative To Datum
  • Pi : Inlet Pressure
  • T : Fluid Temperature
  • Z : Compressibility Factor

Tool Output

  • ΔP : Friction Pressure Loss
  • μ : Dynamic Viscosity
  • ρ : Fluid Density (At Pf)
  • ID : Inside Diameter
  • Mf : Mass Flowrate
  • Ng : Mole Flow Rate
  • Pa : Average Fluid Pressure
  • Pf : Pressure For Fluid Property Calculation
  • Po : Outlet Pressure
  • Qf : Volume Flowrate (At Pf)
  • Re : Reynolds Number (At Inlet)
  • SG : Gas Specific Gravity
  • Vf : Fluid Velocity (At Pf)
  • cvg : Convergence Factor (≅ 1)
  • es : Elevation Constant
  • fd : Darcy Friction Factor
  • ff : Fanning Friction Factor
  • ls : Length Constant
  • rr : Surface Roughness Ratio
  • ss : Elevation Exponent
  • td : Darcy Transmission Factor
  • tf : Fanning Transmission Factor
  • vg : Mole Specific Volume (At Pf)