Calculate liquid piping outlet pressure from the liquid equation using the Moody diagram (API RP 14E section 2.2).
The Moody diagram can be used to calculate laminar flow (Hagen-Poiseuille laminar flow equation), and turbulent flow (the original Colebrook White equation or the modified Colebrook White equation). The Moody diagram and friction factors are calculated using the Darcy-Weisbach method rather than the Fanning method.
Tool Input
- schdtype : Pipe Schedule Type
- diamtype : Pipe Diameter Type
- ODu : User Defined Outside Diameter
- IDu : User Defined Inside Diameter
- wtntype : Wall Thickness Type
- tnu : User Defined Wall Thickness
- visctype : Viscosity Type
- μu : User Defined Dynamic Viscosity
- νu : User Defined Kinematic Viscosity
- voltype : Fluid Flow Rate Type
- Qu : User Defined Volume Flow Rate
- Mu : User Defined Mass Flow Rate
- Vu : User Defined Fluid Velocity
- Reu : User Defined Reynolds Number
- rfactype : Pipe Internal Roughness Type
- ru : User Defined Surface Roughness
- rru : User Defined Relative Roughness
- fdtype : Darcy Friction Factor Type
- fdu : User Defined Darcy Friction Factor
- ρ : Fluid Density
- L : Pipe Length
- K : Minor Loss K Factor
- zi : Inlet Elevation Relative To Datum
- zo : Outlet Elevation Relative To Datum
- Pi : Inlet Pressure
Tool Output
- ΔP : Friction Pressure Loss
- μ : Dynamic Viscosity
- ID : Inside Diameter
- M : Mass Flowrate
- Po : Outlet Pressure
- Q : Volume Flowrate
- Re : Reynolds Number
- V : Fluid Velocity
- cvg : Convergence Factor (≅ 1)
- fd : Darcy Friction Factor
- ff : Fanning Friction Factor
- rr : Surface Roughness Ratio
- td : Darcy Transmission Factor
- tf : Fanning Transmission Factor