Pipeng Toolbox : Gas Specific Gravity Calculation Blank User
Short Cuts
 GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±

# Single Phase Gas Specific Gravity Calculator Module

Calculate gas specific gravity for single phase gas.

Gas specific gravity is calculated relative to the density of air, at standard temperature and pressure. The gas specific gravity is approximately equal to the ratio of the gas molar mass over the molar mass of air (28.964 g/mol).

## Related Modules :

2000+ online calculation tools. Use the [FREE] tools in free basic mode with no login, or login to use the tools in free plus mode (with plots, tables, goal seek etc).   (tools listed by topic)   (about the Pipeng Toolbox)   ( Help Getting Started Opens in the Popup Work Book )

CALCULATOR : Gas Specific Gravity Molar Volume Molar Mass And Density [FREE]   ±

Calculate single phase gas specific gravity, molar mass, molar volume and density.

Enter either the gas specific gravity, gas molar mass, gas molar volume or gas density. Gas specific gravity is approximately equal to the gas molar mass divided by the molar mass of dry air. The molar mass of dry air is taken as 28.964 kg/kg-mole. For gas mixtures, gas specific gravity is often easier to measure than the molar mass.

## Tool Input

• sgtype : Gas Specific Gravity Type
• SGu : User Defined Gas Specific Gravity
• Mu : User Defined Gas Molar Mass
• ρu : User Defined Gas Density
• Z : Gas Compressibility Factor
• P : Gas Pressure
• T : Gas Temperature

## Tool Output

• ρ : Gas Density
• M : Gas Molar Mass
• SG : Gas Specific Gravity
• vg : Gas Mole Volume (At T P)

CALCULATOR : Gas Density And Compressibility Factor [FREE]   ±

Calculate single phase gas compressibility factor and density from gas temperature and pressure for selected gases.

The gas compressibility factor is calculated from the critical point temperature, critical point temperature, and the accentric factor using either the Peng Robinson, Soave, Redlich Kwong or Van Der Waals equations of state (EOS). The compressibility factor calculation is valid for gas phase only. Use the Result Plot option to plot compressibility factor versus pressure and temperature, compressibility factor versus pressure and equation of state type, or compressibility factor versus temperature and equation of state type.

## Tool Input

• fluidtype : Fluid Type
• SGu : User Defined Gas Specific Gravity
• ωu : User Defined Acentric Factor
• Pcu : User Defined Critical Pressure
• Tcu : User Defined Critical Temperature
• eostype : Equation Of State
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor
• Pc : Critical Point Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tc : Critical Point Temperature
• Tr : Reduced Temperature
• Vm : Molar Volume
• Z : Compressibility Factor
• cvg : Convergence Check
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C1) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C1 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C2) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C2 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C3) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C3 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C4) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C4 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C5) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C5 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C6) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C6 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C7) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C7 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C8) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C8 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C9) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C9 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C10) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C10 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C11) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C11 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C12) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C12 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C13) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C13 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C14) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C14 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C15) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C15 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C16) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C16 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C17) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C17 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C18) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C18 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C19) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C19 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Organic C20-28) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for organic C20-28 compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Inorganic A-M) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for inorganic A-M compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass

CALCULATOR : Single Phase Gas Specific Gravity And Density (Inorganic N-Z) [SUBSCRIPTION]   ±

Calculate single phase gas specific gravity and density for inorganic N-Z compounds. The gas specific gravity is equal to the gas molar mass divided by the molar mass of air. The compressibility factor is calculated from the critical pressure, critical temperature and the accentric factor using the Peng Robinson, Soave, Redlich Kwong and Van Der Waals equations of state (EOS). The calculation is valid for the gas phase only.

Reference : Yaws Chemical Properties Handbook, McGraw Hill

## Tool Input

• datatype : Fluid Type
• eostype : Equation Of State Type
• Zu : User Defined Compressibility Factor
• P : Fluid Pressure
• T : Fluid Temperature

## Tool Output

• ρ : Fluid Density
• ω : Accentric Factor (Omega)
• Pc : Critical Pressure
• Pr : Reduced Pressure
• SG : Gas Specific Gravity Relative To Air
• Tb : Boiling Point
• Tc : Critical Temperature
• Tf : Freezing Point
• Tr : Reduced Temperature
• Vm : Mole Specific Volume
• Z : Compressiblity Factor
• cvg : Convergence Check (== 1)
• mw : Fluid Molar Mass