Pipeng Toolbox : Gas Density Calculators Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Single Phase Gas Density

Calculate gas density from temperature, pressure and specific gravity for single phase gas.

Gas density is calculated using the ideal gas equations, with the compressibility factor Z. The gas specific gravity is approximately equal to the ratio of the gas molar mass over the molar mass of air (28.964 g/mol).

Change Module :

Related Modules :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : Gas Density From Temperature Pressure And Specific Gravity [FREE]   ±

Calculate single phase gas density from temperature, pressure and specific gravity for common gases: argon Ar, n-decane C10H22, ethylene C2H4, ethyl chloride C2H5Cl, ethane C2H6, propene C3H6, propane C3H8, iso-butane C4H10, n-butane C4H10, iso-pentane C5H12, n-pentane C5H12, n-hexane C6H14, n-heptane C7H16, n-octane C8H18, n-nonane C9H20, methyl chloride CH3Cl, methane CH4, chlorine Cl2, carbon monoxide CO, carbon dioxide CO2, hydrogen H2, steam H2O, hydrogen sulphide H2S, hydrogen chloride HCl, helium He, krypton Kr, nitrogen N2, air N2+O2, ammonia NH3, oxygen O2, sulphur dioxide SO2, xenon Xe.

Gas molar mass is approximately equal to the molar mass of dry air times the gas specific gravity at standard conditions (for most gases the compressibility factor Z is approximately equal to 1 at standard conditions). The molar mass of dry air is taken as 28.964 kg/kg-mole. For gas mixtures, gas specific gravity is easier to measure than the molar mass.

Tool Input

  • fluidtype : Gas Type
    • SGu : User Defined Gas Specific Gravity
  • Z : Gas Compressibility Factor
  • P : Gas Pressure
  • T : Gas Temperature

Tool Output

  • ρ : Gas Density
  • M : Gas Molar Mass
  • R : Gas Constant
  • SG : Gas Specific Gravity
  • vg : Gas Molar Volume (At T P)

CALCULATOR : Gas Density And Volume From Temperature Pressure And Specific Gravity [FREE]   ±

Calculate single phase gas density and volume from temperature, pressure and specific gravity for common gases: argon Ar, n-decane C10H22, ethylene C2H4, ethyl chloride C2H5Cl, ethane C2H6, propene C3H6, propane C3H8, iso-butane C4H10, n-butane C4H10, iso-pentane C5H12, n-pentane C5H12, n-hexane C6H14, n-heptane C7H16, n-octane C8H18, n-nonane C9H20, methyl chloride CH3Cl, methane CH4, chlorine Cl2, carbon monoxide CO, carbon dioxide CO2, hydrogen H2, steam H2O, hydrogen sulphide H2S, hydrogen chloride HCl, helium He, krypton Kr, nitrogen N2, air N2+O2, ammonia NH3, oxygen O2, sulphur dioxide SO2, xenon Xe.

Gas molar mass is approximately equal to the molar mass of dry air times the gas specific gravity at standard conditions (for most gases the compressibility factor Z is approximately equal to 1 at standard conditions). The molar mass of dry air is taken as 28.964 kg/kg-mole. For gas mixtures, gas specific gravity is easier to measure than the molar mass. Gas volume can be defined by gas volume, gas mass, gas moles, or pipeline length.

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • fluidtype : Gas Type
    • SGu : User Defined Gas Specific Gravity
  • voltype : Gas Volume Type
    • Vfu : User Defined Gas Volume
    • Mfu : User Defined Gas Mass
    • Ngu : User Defined Gas Moles
    • Lu : User Defined Pipeline Length
  • P : Gas Pressure
  • T : Gas Temperature
  • Z : Gas Compressibility Factor

Tool Output

  • ρ : Gas Density
  • ID : Inside Diameter
  • L : Pipeline Length
  • M : Gas Molar Mass
  • Mf : Gas Mass
  • Ng : Gas Moles
  • R : Gas Constant
  • SG : Gas Specific Gravity
  • Vf : Gas Volume (At T P)
  • vg : Gas Molar Volume (At T P)

CALCULATOR : Gas Density And Flow Rate From Temperature Pressure And Specific Gravity [FREE]   ±

Calculate single phase gas density and flowrate from temperature, pressure and specific gravity for common gases: argon Ar, n-decane C10H22, ethylene C2H4, ethyl chloride C2H5Cl, ethane C2H6, propene C3H6, propane C3H8, iso-butane C4H10, n-butane C4H10, iso-pentane C5H12, n-pentane C5H12, n-hexane C6H14, n-heptane C7H16, n-octane C8H18, n-nonane C9H20, methyl chloride CH3Cl, methane CH4, chlorine Cl2, carbon monoxide CO, carbon dioxide CO2, hydrogen H2, steam H2O, hydrogen sulphide H2S, hydrogen chloride HCl, helium He, krypton Kr, nitrogen N2, air N2+O2, ammonia NH3, oxygen O2, sulphur dioxide SO2, xenon Xe.

Gas molar mass is approximately equal to the molar mass of dry air times the gas specific gravity at standard conditions (for most gases the compressibility factor Z is approximately equal to 1 at standard conditions). The molar mass of dry air is taken as 28.964 kg/kg-mole. For gas mixtures, gas specific gravity is easier to measure than the molar mass. Gas flowrate can be defined by gas volume flowrate, gas mass flowrate, gas mole flowrate, or gas velocity.

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • fluidtype : Gas Type
    • SGu : User Defined Gas Specific Gravity
  • voltype : Gas Flowrate Type
    • Qfu : User Defined Gas Volume Flow Rate
    • Mfu : User Defined Gas Mass Flow Rate
    • Ngu : User Defined Gas Mole Flow Rate
    • Vfu : User Defined Gas Velocity
  • P : Gas Pressure
  • T : Gas Temperature
  • Z : Gas Compressibility Factor

Tool Output

  • ρ : Gas Density
  • ID : Inside Diameter
  • M : Gas Molar Mass
  • Mf : Gas Mass Flowrate
  • Ng : Gas Mole Flowrate
  • Qf : Gas Volume Flowrate (At T P)
  • R : Gas Constant
  • SG : Gas Specific Gravity
  • Vf : Gas Velocity
  • vg : Gas Mole Volume (At T P)

CALCULATOR : Gas Specific Gravity Molar Volume Molar Mass And Density [FREE]   ±

Calculate single phase gas specific gravity, molar mass, molar volume and density.

Enter either the gas specific gravity, gas molar mass, gas molar volume or gas density. Gas specific gravity is approximately equal to the gas molar mass divided by the molar mass of dry air. The molar mass of dry air is taken as 28.964 kg/kg-mole. For gas mixtures, gas specific gravity is often easier to measure than the molar mass.

Tool Input

  • sgtype : Gas Specific Gravity Type
    • SGu : User Defined Gas Specific Gravity
    • Mu : User Defined Gas Molar Mass
    • ρu : User Defined Gas Density
  • Z : Gas Compressibility Factor
  • P : Gas Pressure
  • T : Gas Temperature

Tool Output

  • ρ : Gas Density
  • M : Gas Molar Mass
  • SG : Gas Specific Gravity
  • vg : Gas Mole Volume (At T P)

CALCULATOR : Gas Density And Compressibility Factor [FREE]   ±

Calculate single phase gas compressibility factor and density from gas temperature and pressure for selected gases.

The gas compressibility factor is calculated from the critical point temperature, critical point temperature, and the accentric factor using either the Peng Robinson, Soave, Redlich Kwong or Van Der Waals equations of state (EOS). The compressibility factor calculation is valid for gas phase only. Use the Result Plot option to plot compressibility factor versus pressure and temperature, compressibility factor versus pressure and equation of state type, or compressibility factor versus temperature and equation of state type.

Tool Input

  • fluidtype : Fluid Type
    • SGu : User Defined Gas Specific Gravity
    • ωu : User Defined Acentric Factor
    • Pcu : User Defined Critical Pressure
    • Tcu : User Defined Critical Temperature
  • eostype : Equation Of State
    • Zu : User Defined Compressibility Factor
  • P : Fluid Pressure
  • T : Fluid Temperature

Tool Output

  • ρ : Fluid Density
  • ω : Accentric Factor
  • Pc : Critical Point Pressure
  • Pr : Reduced Pressure
  • SG : Gas Specific Gravity Relative To Air
  • Tc : Critical Point Temperature
  • Tr : Reduced Temperature
  • Vm : Molar Volume
  • Z : Compressibility Factor
  • cvg : Convergence Check
  • mw : Fluid Molar Mass

CALCULATOR : Pipe Inside Diameter And Cross Section Area [FREE]   ±

Calculate pipe inside diameter and inside cross section area from pipe diameter and wall thickness.

Use the Result Table option to display a table of the inside diameter and cross section area versus either outside diameter or wall thickness.

Tool Input

  • schdtype : Schedule Type
  • diamtype : Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness

Tool Output

  • AX : Pipe Inside Cross Section Area
  • ID : Nominal Inside Diameter
  • OD : Nominal Outside Diameter
  • OD/tn : Diameter Over Wall Thickness Ratio
  • tn : Nominal Wall Thickness