Pipeng Toolbox : Steam Condenser Calculators Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

IAPWS R7-97 Steam Condenser Power

Calculate IAPWS R7-97 steam condenser power from temperature, pressure and mass flow rate.

The condenser power is calculated from the change of enthalpy between the inlet steam, and the outlet water. The enthalpy change is negative for a condenser. The condenser pressure is assumed constant.

Note : There is an anomaly in the steam calculation for region 3 between the saturated vapour line, the region 2/3 boundary, and the critical pressure. Refer to the region 3 anomaly help page for more details (click the utility button on the data bar). IAPWS R7-97 is intended for industrial use, and is a simplified version of IAPWS R6-95 for scientific use. IAPWS R7-97 was developed as an improvement of the IFC-67 model.

Reference : IAPWS R7-97 Industrial Formulation for thermodynamic Properties of Water and Steam

Change Module :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : IAPWS R7-97 Saturated Steam [FREE]   ±

Calculate steam saturation pressure and temperature (IAPWS R7-97 section 8).

The saturation point can be calculated from either the saturation temperature, or the saturation pressure. The calculation is valid between 273.15 K, and the critical point, 647.096 K. Use the Result Plot option to plot the steam temperature and pressure and steam properties versus either temperature or pressure.

Note : The speed of sound is not calculated for liquid vapour mixtures.

Tool Input

  • anomtype : Region 2/3 Anomaly Type
  • proptype : Steam Phase
    • Xu : User Defined Saturated Steam Quality
  • sattype : Saturation Pressure Type
    • Psu : User Defined Saturation Pressure
    • Tsu : User Defined Saturation Temperature

Tool Output

  • ρ : Density
  • Cp : Specific Heat Constant Pressure
  • Cp-Cv : Delta Specific Heat (Cp - Cv)
  • Cp/Cv : Specific Heat Ratio
  • Cv : Specific Heat Constant Volume
  • Ps : Saturation Pressure
  • Ts : Saturation Temperature
  • Vc : Speed Of Sound
  • Z : Compressibility Factor
  • cvg : Convergence Check
  • h : Enthalpy
  • s : Entropy
  • u : Internal Energy
  • vg : Mole Specific Volume
  • vm : Specific Volume
  • wv : Specific Weight

CALCULATOR : IAPWS R7-97 Steam Table [FREE]   ±

Calculate steam table from temperature and pressure (IAPWS R7-97 Steam Table).

Steam table values can be calculated for water and steam, saturated water, saturated steam, saturated water and steam, metastable water, and metastable steam. The calculations for water and steam are valid between 273.15 K and 1073.15 K (0 to 100 MPa), and between 1073.15 K and 2273.15 K (0 to 50 MPa).

The saturated water and steam calculations are valid between 273.15 K and 647.096 K.

The metastable calculation is valid between 273.15 K and 647.096 K, and for pressure from the saturated vapour line to the 5% equilibium moisture line (user defined). Use the Result Plot option to plot the steam properties versus temperature and pressure.

Tool Input

  • anomtype : Region 2/3 Anomaly Type
  • proptype : Steam Phase
    • Pu : User Defined Pressure
    • Tu : User Defined Temperature
    • Xu : User Defined Saturated Steam Quality

Tool Output

  • ρ : Density
  • Cp : Specific Heat Constant Pressure
  • Cp-Cv : Delta Specific Heat (Cp - Cv)
  • Cp/Cv : Specific Heat Ratio
  • Cv : Specific Heat Constant Volume
  • P : Pressure
  • T : Temperature
  • Vc : Speed Of Sound
  • Z : Compressibility Factor
  • cvg : Convergence Check
  • h : Enthalpy
  • s : Entropy
  • u : Internal Energy
  • vg : Mole Specific Volume
  • vm : Specific Volume
  • wv : Specific Weight

CALCULATOR : IAPWS R7-97 Steam Condenser Power [FREE]   ±

Calculate steam condenser power from temperature, pressure and mass flow rate (IAPWS R7-97 Steam Table).

The condenser power is calculated from the change in enthalpy. The condenser pressure is assumed constant. The fluid phase is assumed to be steam at the inlet, and water at the outlet. For water inlet and water outlet, the condenser is functioning as a water cooler. Use the design factor for sizing of the condenser. Condenser efficiency is not included. The calculated change in enthalpy and condenser power is positive. Use the Result Plot option to plot condenser power versus mass flow rate.

Tool Input

  • anomtype : Region 2/3 Anomaly Type
  • proptype : Steam Phase
    • Pu : User Defined Steam Pressure
    • Tu : User Defined Steam Temperature
    • Xu : User Defined Saturated Steam Quality
  • dfactype : Design Factor Type
    • Du : User Defined Design Factor
  • modetype : Fluid Property Type
  • Tw : Water Temperature
  • m : Mass Flow Rate

Tool Output

  • ρ : Density
  • Cp : Specific Heat Constant Pressure
  • Cp-Cv : Delta Specific Heat (Cp - Cv)
  • Cp/Cv : Specific Heat Ratio
  • Cv : Specific Heat Constant Volume
  • D : Design Factor
  • Ps : Steam Pressure
  • Q : Condenser Power (Including Design Factor)
  • Ts : Steam Temperature
  • Z : Compressibility Factor
  • cvg : Convergence Check
  • h : Enthalpy
  • hΔ : Delta Enthalpy
  • s : Entropy
  • u : Internal Energy
  • vg : Mole Specific Volume
  • vm : Specific Volume
  • wv : Specific Weight