Pipeng Toolbox : Stress And Strain Calculators Blank User
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Demo

Engineering Stress And Strain

Calculate material stress and strain.

Engineering stress is the ratio of load over the unstressed cross section area. Engineering strain is the ratio of change in length over the unstressed length. The elastic modulus is the ratio of engineering stress over engineering strain. Engineering stress and strain ignores the change in cross section area and length as a load is applied.

Change Module :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : Typical Density Elastic Modulus Poisson Ratio Bulk Modulus Shear Modulus And Thermal Expansion Coeficient [FREE]   ±

Calculate typical elastic modulus, shear modulus, bulk modulus, density, and thermal expansion coefficient of a solid.

The table values of Poisson ratio and bulk modulus are calculated from the elastic modulus and shear modulus. Use the Result Table option to display a table of properties versus material type.

Tool Input

  • modptype : Material Type
    • Eu : User Defined Elastic Modulus
    • Gu : User Defined Shear Modulus
    • Ku : User Defined Bulk Modulus
    • νu : User Defined Poisson Ratio
    • ρu : User Defined Density
    • αu : User Defined Thermal Expansion Coefficient

Tool Output

  • α : Thermal Expansion Coefficient
  • ν : Poisson Ratio
  • ρ : Density
  • E : Elastic Modulus
  • G : Shear Modulus
  • K : Bulk Modulus

CALCULATOR : Pipeline Axial Stress From Temperature And Pressure [PLUS]   ±

Calculate pipeline axial load and axial stress from operating temperature and pressure.

The axial stress is caused by changes in temperature and pressure between installation and operation. The external pressure is assumed to be constant during installation and operation (submerged pipeline). The internal pressure is assumed to be zero during installation. The stress is positive in tension, and negative in compression.

Nominal pipe diameter and wall thickness should normally be used for axial load calculations. Pipe wall stress is calculated for the cross section area, and is indicative only.

Tool Input

  • pletype : External Pressure Type
    • Peu : User Defined External Pressure
  • syutype : Stress Table Type
  • mattype : Yield Stress Type
    • SMYSu : User Defined Specified Minimum Yield Stress
  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • corrtype : Pipe Wall Corrosion Type
  • modptype : Pipe Material Type
    • νu : User Defined Pipe Poisson's Ratio
    • αu : User Defined Pipe Thermal Expansion Coefficient
    • Eu : User Defined Pipe Elastic Modulus
  • sectype : Pipe Section Properties Type
    • Asu : User Defined Steel Cross Section Area
    • EAαu : User Defined Pipe E x A x alpha
  • loadtype : Axial Load Type
    • Fgu : User Defined Global Axial Load
    • Fwu : User Defined Pipe Wall Axial Load
  • tc : Corrosion Allowance
  • Fd : Design Factor
  • Pi : Internal Pressure
  • Td : Design Temperature
  • Tin : Installation Temperature
  • Fin : Installation Load

Tool Output

  • α : Pipe Thermal Expansion Coefficient
  • ν : Pipe Poisson's Ratio
  • Ax : Pipe Cross Section Area
  • E : Pipe Elastic Modulus
  • EAα : Pipe E x A x alpha
  • Fg : Global Or External Axial Load
  • Fw : Pipe Wall Axial Load
  • ID : Pipe Inside Diameter
  • OD : Pipe Outside Diameter
  • OD/tn : Pipe Diameter Over Wall Thickness Ratio
  • PΔ : Pressure Difference
  • Pe : External Pressure
  • SMYS : Specified Minimum Yield Stress
  • Sd : Allowable Stress
  • Sw : Pipe Wall Axial Stress
  • Sw/Sd : Axial Stress Over Allowable Stress Ratio
  • t : Stress Check Wall Thickness
  • tn : Pipe Nominal Wall Thickness

CALCULATOR : Pipeline Equivalent Stress [PLUS]   ±

Calculate pipeline operating axial load, combined stress, hoop stress, longitudinal stress, bending stress and torsion stress.

Stress is positive in tension, and negative in compression. The external pressure is assumed constant for installation and operation (submerged pipeline). The internal pressure is assumed zero for installation. The axial stress is caused by changes in temperature and pressure between installation and operation. The combined stress can be calculated using either Tresca's or Von Mises' formula.

Tool Input

  • pletype : External Pressure Type
    • Peu : User Defined External Pressure
  • syutype : Stress Table Type
  • mattype : Yield Stress Type
    • SMYSu : User Defined Specified Minimum Yield Stress
  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • corrtype : Pipe Wall Corrosion Type
  • modptype : Pipe Material Type
    • νu : User Defined Pipe Poisson's Ratio
    • αu : User Defined Pipe Thermal Expansion Coefficient
    • Eu : User Defined Pipe Elastic Modulus
  • sectype : Pipe Section Properties Type
    • Asu : User Defined Steel Cross Section Area
    • EAαu : User Defined Pipe E x A x alpha
    • Zu : User Defined Pipe Z Modulus
  • walltype : Hoop Stress Calculation Type
    • Yu : User Defined ASME Y Factor
  • loadtype : Axial Load Type
    • Fgu : User Defined Global Axial Load
    • Fwu : User Defined Pipe Wall Axial Load
  • ifactype : Stress Factor Type
    • iiu : User Defined In Plane Bending Stress factor
    • iou : User Defined Out Of Plane Bending Stress Factor
    • itu : User Defined Torsion Shear Stress Factor
  • sbtype : Bending Stress Type
  • sttype : Torsion Shear Stress Type
  • checktype : Stress Check Type
  • momtype : Bending Stress Type
  • tc : Corrosion Allowance
  • Fd : Design Factor
  • Td : Design Temperature
  • Pi : Internal Pressure
  • Tin : Installation Temperature
  • Fin : Installation Load
  • M : Design Moment

Tool Output

  • α : Pipe Thermal Expansion Coefficient
  • ν : Pipe Poisson's Ratio
  • Ax : Pipe Cross Section Area
  • E : Pipe Elastic Modulus
  • EAα : Pipe E x A x alpha
  • Fg : Global Or External Axial Load
  • Fw : Pipe Wall Axial Load
  • ID : Pipe Inside Diameter
  • OD : Pipe Outside Diameter
  • OD/t : Pipe Diameter Over Wall Thickness Ratio
  • PΔ : Pressure Difference
  • Pe : External Pressure
  • SMYS : Specified Minimum Yield Stress
  • Sb : Bending Stress
  • Schk : Check Stress
  • Schk/Sd : Hoop Stress Over Allowable Stress Ratio
  • Sd : Design Stress
  • Sh : Hoop Stress
  • St : Torsion Stress
  • Sx : Pipe Wall Axial Stress
  • Z : Z Section Modulus
  • ii : In Plane Bending Stress Factor
  • io : Out Of Plane Bending Stress Factor
  • it : Torsion Shear Stress Factor
  • t : Stress Check Wall Thickness
  • tn : Pipe Nominal Wall Thickness