Pipeng Toolbox : DNVGL-RP-C203 Stress Amplitude Calculators Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

DNVGL RP C203 Fatigue Stress Amplitude

Calculate DNVGL-RP-C203 longitudinal stress from bending moment and axial load.

The stress amplitude is the stress range between the load states (eg operating and shut down). Both the positive bending and negative bending should be checked.

Reference : DNVGL-RP-C203 Fatigue Design Of Offshore Steel Structures (Download from the DNVGL website)

Change Module :

Related Modules :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : DNVGL RP C203 Pipeline Longitudinal Stress [PLUS]   ±

Calculate DNVGL RP C203 pipeline longitudinal stress from axial load and bending moment.

For fatigue calculations the cyclic stress amplitude is the difference in longitudinal stress between cycles (for example the operating stress and the shutin stress). The axial load and wall load can be calculated from the pipeline temperature and pressure, or can be user defined.

Reference : DNVGL-OS-F101 : Submarine Pipeline Systems (Download from the DNVGL website)

Tool Input

  • pletype : External Pressure Type
    • Pleu : User Defined External Pressure At Local Elevation
  • plitype : Internal Pressure Type
    • Priu : User Defined Internal Pressure At Reference Elevation
    • Pliu : User Defined Internal Pressure At Local Elevation
  • schdtype : Line Pipe Schedule Type
  • diamtype : Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • modptype : Pipe Material Type
    • νu : User Defined Pipe Poisson's Ratio
    • Eu : User Defined Pipe Elastic Modulus
    • αu : User Defined Pipe Thermal Expansion Coefficient
  • sectype : Cross Section Type
    • Asu : User Defined Steel Cross Section Area
    • Iu : User Defined Pipe Second Area Moment
    • EAαu : User Defined Pipe E x A x alpha
  • loadtype : Load Type
    • Fau : User Defined Effective Axial Load
    • Fwu : User Defined Pipe Wall Axial Load
  • Td : Design Temperature
  • Tin : Installation Temperature
  • H : Installation Load
  • ρf : Internal Fluid Density
  • ρe : External Fluid Density
  • Zr : Reference Elevation Relative To Datum
  • Zl : Local Elevation Relative To Datum
  • Zs : Surface Elevation Relative To Datum
  • Msd : Bending Moment

Tool Output

  • ΔPl : Pressure Difference Across Pipe Wall
  • α : Pipe Thermal Expansion Coefficient
  • ν : Pipe Poisson's Ratio
  • σa : Axial Stress
  • σb : Bending Stress
  • σl+ : Longitudinal Stress +ve Bending
  • σl- : Longitudinal Stress -ve Bending
  • As : Steel Cross Section Area
  • E : Pipe Elastic Modulus
  • EAα : Pipe E x A x alpha
  • Fa : Effective Axial Force
  • Fw : Pipe Wall Force
  • ID : Nominal Inside Diameter
  • Is : Steel Second Area Moment
  • OD : Nominal Outside Diameter
  • OD/tn : Nominal Diameter Over Wall Thickness Ratio
  • Ple : External Pressure
  • Pli : Internal Pressure
  • tn : Nominal Wall Thickness

CALCULATOR : DNVGL RP C203 Circular Tube Stress Amplitude And Allowable Cycles [PLUS]   ±

Calculate DNVGL RP C203 tubular stress amplitude and allowable cycles from axial load and bending moment.

Enter the axial load and bending moment for load state A, and load state B. The stress amplitude is the maximum difference in longitudinal stress between load state A and load state B. The longitudinal stress can be calculated for both positive bending stress (add the bending stress) and negative bending stress (subtract the bending stress). Use the user defined section option for non symmetric sections.

Tool Input

  • jointtype : Joint Or Material Type
  • csntype : SN Curve Type
  • schdtype : Tubular Schedule Type
  • diamtype : Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • sectype : Cross Section Type
    • Asu : User Defined Cross Section Area
    • Zpu : User Defined Z Modulus Positive Bending
    • Znu : User Defined Z Modulus Negative Bending (Asymmetric Section Only)
  • walltype : Weld Joint Type
    • tru : User Defined Reference Thickness
  • kfactype : Thickness Exponent Type
    • ku : User Defined Thickness Exponent
  • scftype : Stress Concentration Factor Type
    • SCFu : User Defined Stress Concentration Factor
  • dfftype : Design Fatigue Factor Type
    • DFFu : User Defined Design Fatigue Factor
  • ratype : Forging Surface Roughness Type
  • temptype : Temperature Derating Type
    • Tu : User Defined Design Temperature
  • systype : System Effect Factor Type
    • Rsu : User Defined System Effect Log Factor
  • mfactype : Mean Stress Factor Type
    • fmu : User Defined Mean Stress Factor
  • sstype : Stress Type Positive Or Negative Bending
  • Fa : Axial Load
  • Mb : Bending Moment

Tool Output

  • Ax : Tubular Cross Section Area
  • DFF : Design Fatigue Factor
  • N : Allowable Number Of Cycles
  • OD : Nominal Outside Diameter
  • Rm : Material Thickness Derating Log Factor
  • Rs : System Effect Log Factor
  • Rt : Temperature Derating Log Factor
  • S+ : Positive Stress Tension
  • S- : Negative Stress Compression
  • SCF : Stress Concentration Factor
  • Saa : Axial Stress A
  • Sab : Axial Stress B
  • Sba : Bending Stress A
  • Sbb : Bending Stress B
  • Sd : Design Stress Amplitude (With fm and SCF)
  • Sla : Longitudinal Stress A
  • Slb : Longitudinal Stress B
  • Sm : Mean Stress Amplitude (With fm)
  • Sn : Nominal Stress Amplitude (|Sla - Slb|)
  • Zn : Tubular Z Modulus Negative Bending
  • Zp : Tubular Z Modulus Positive Bending
  • fm : Mean Stress Factor
  • k : Thickness Exponent
  • tn : Nominal Wall Thickness
  • tref : Reference Thickness

CALCULATOR : DNVGL RP C203 Flat Plate Stress Amplitude And Allowable Cycles [PLUS]   ±

Calculate DNVGL RP C203 rectangular plate stress amplitude and allowable cycles from axial load and bending moment.

Enter the axial load and bending moment for load state A, and load state B. The stress amplitude is the maximum difference in longitudinal stress between load state A and load state B. The longitudinal stress can be calculated for both positive bending stress (add the bending stress) and negative bending stress (subtract the bending stress). Use the user defined section option for non symmetric sections.

Tool Input

  • jointtype : Joint Or Material Type
  • csntype : SN Curve Type
  • sectype : Cross Section Type
    • Asu : User Defined Cross Section Area
    • Zpu : User Defined Z Modulus Positive Bending
    • Znu : User Defined Z Modulus Negative Bending (Asymmetric Section Only)
  • walltype : Weld Joint Type
    • tru : User Defined Reference Thickness
  • kfactype : Thickness Exponent Type
    • ku : User Defined Thickness Exponent
  • scftype : Stress Concentration Factor Type
    • SCFu : User Defined Stress Concentration Factor
  • dfftype : Design Fatigue Factor Type
    • DFFu : User Defined Design Fatigue Factor
  • ratype : Forging Surface Roughness Type
  • temptype : Temperature Derating Type
    • Tu : User Defined Design Temperature
  • systype : System Effect Factor Type
    • Rsu : User Defined System Effect Log Factor
  • mfactype : Mean Stress Factor Type
    • fmu : User Defined Mean Stress Factor
  • sstype : Stress Type Positive Or Negative Bending
  • Fa : Axial Load
  • Mb : Bending Moment
  • w : Nominal Plate Width
  • t : Nominal Plate Thickness

Tool Output

  • Ax : Plate Cross Section Area
  • DFF : Design Fatigue Factor
  • N : Allowable Number Of Cycles
  • Rm : Material Thickness Derating Log Factor
  • Rs : System Effect Log Factor
  • Rt : Temperature Derating Log Factor
  • S+ : Positive Stress Tension
  • S- : Negative Stress Compression
  • SCF : Stress Concentration Factor
  • Saa : Axial Stress A
  • Sab : Axial Stress B
  • Sba : Bending Stress A
  • Sbb : Bending Stress B
  • Sd : Design Stress Amplitude (With fm and SCF)
  • Sla : Longitudinal Stress A
  • Slb : Longitudinal Stress B
  • Sm : Mean Stress Amplitude (With fm)
  • Sn : Nominal Stress Amplitude (|Sla - Slb|)
  • Zn : Plate Z Modulus Negative Bending
  • Zp : Plate Z Modulus Positive Bending
  • fm : Mean Stress Factor
  • k : Thickness Exponent
  • tref : Reference Thickness

CALCULATOR : DNVGL RP C203 Pipeline Stress Amplitude And Allowable Cycles [PLUS]   ±

Calculate DNVGL RP C203 pipeline stress amplitude and allowable cycles from axial load and bending moment.

Enter the internal pressure, temperature, and bending moment for load state A, and load state B. The stress amplitude is the maximum difference in longitudinal stress between load state A and load state B. The longitudinal stress can be calculated for both positive bending stress (add the bending stress) and negative bending stress (subtract the bending stress). Use the user defined section option for non symmetric sections. The external axial load can either be calculated from temperature and pressure, or user defined. The axial wall load is calculated from the external axial load. The design fatigue factors for pipelines are defined by safety class in DNVGL-ST-F101 (DFF = 2 Low, DFF = 6 medium, and DFF = 10 high).

Reference : DNVGL-ST-F101 : Submarine Pipeline Systems (Download from the DNVGL website)

Tool Input

  • schdtype : Line Pipe Schedule Type
  • diamtype : Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • sectype : Cross Section Type
    • Asu : User Defined Cross Section Area
    • Zpu : User Defined Z Modulus Positive Bending
    • Znu : User Defined Z Modulus Negative Bending (Asymmetric Section Only)
    • EAαu : User Defined E x A x alpha
  • loadtype : Load Type
  • Fa : User Defined Axial Load
  • jointtype : Joint Or Material Type
  • csntype : SN Curve Type
  • walltype : Weld Joint Type
    • tru : User Defined Reference Thickness
  • kfactype : Thickness Exponent Type
    • ku : User Defined Thickness Exponent
  • scftype : Stress Concentration Factor Type
    • SCFu : User Defined Stress Concentration Factor
  • dfftype : Design Fatigue Factor Type
    • DFFu : User Defined Design Fatigue Factor
  • ratype : Forging Surface Roughness Type
  • temptype : Temperature Derating Type
    • Td : User Defined Design Maximum Temperature
  • systype : System Effect Factor Type
    • Rsu : User Defined System Effect Log Factor
  • mfactype : Mean Stress Factor Type
    • fmu : User Defined Mean Stress Factor
  • sstype : Stress Type Positive Or Negative Bending
  • To : Operating Temperature
  • Pd : Operating Pressure
  • Mb : Bending Moment
  • Tin : Installation Temperature
  • Pe : External Pressure
  • H : Installation Force
  • ν : Poisson's Ratio
  • E : Elastic or Young's Modulus E
  • α : Linear Expansion Coefficient

Tool Output

  • Ax : Pipe Cross Section Area
  • DFF : Design Fatigue Factor
  • EAα : Pipe E x A x alpha
  • Fwa : Pipe Wall Axial Load A
  • Fwb : Pipe Wall Axial Load B
  • N : Allowable Number Of Cycles
  • OD : Nominal Outside Diameter
  • Rm : Material Thickness Derating Log Factor
  • Rs : System Effect Log Factor
  • Rt : Temperature Derating Log Factor
  • S+ : Positive Stress Tension
  • S- : Negative Stress Compression
  • SCF : Stress Concentration Factor
  • Saa : Axial Stress A
  • Sab : Axial Stress B
  • Sba : Bending Stress A
  • Sbb : Bending Stress B
  • Sd : Design Stress Amplitude (With fm and SCF)
  • Sla : Longitudinal Stress A
  • Slb : Longitudinal Stress B
  • Sm : Mean Stress Amplitude (With fm)
  • Sn : Nominal Stress Amplitude (|Sla - Slb|)
  • Zn : Pipe Z Modulus Negative Bending
  • Zp : Pipe Z Modulus Positive Bending
  • fm : Mean Stress Factor
  • k : Thickness Exponent
  • tn : Nominal Wall Thickness
  • tref : Reference Thickness

CALCULATOR : DNVGL RP C203 Pipeline Local Pressure From Elevation [FREE]   ±

Calculate DNVGL RP C203 pipeline local stationary pressure from elevation.

The local internal pressure is calculated from the reference pressure and relative elevation. The external pressure is calculated from the water depth. The internal fluid density is assumed constant.

Tool Input

  • pletype : External Pressure Type
    • Pleu : User Defined Local External Pressure
  • plitype : Internal Pressure Type
    • Priu : User Defined Reference Internal Pressure
    • Pliu : User Defined Local Internal Pressure
  • ρf : Internal Fluid Density
  • ρe : External Fluid Density
  • Zr : Reference Elevation Relative To Datum
  • Zl : Local Elevation Relative To Datum
  • Zs : Surface Elevation Relative To Datum

Tool Output

  • ΔPl : Pressure Difference Across Pipe Wall
  • Δz : Local Elevation Relative To Reference Elevation
  • Ple : External Pressure
  • Pli : Internal Pressure At Local Elevation
  • Pri : Internal Pressure At Reference Elevation
  • wd : Water Depth

CALCULATOR : DNVGL RP C203 Bolt Tensile Stress Amplitude And Allowable Cycles [PLUS]   ±

Calculate DNVGL RP C203 bolt tensile stress amplitude and allowable cycles from tensile load amplitude.

The bolt is assumed to be in tension (the mean stress is ignored). The tension load amplitude is the difference in tension load (compression is ignored). The bolt tensile area can be calculated for either ANSI threads, or ISO threads.

Tool Input

  • bolttype : Bolt Schedule
  • diabtype : Bolt Size
    • Du : User Defined Bolt Diameter
    • Pu : User Defined Pitch Length
    • TPIu : User Defined Threads Per Inch
  • areatype : Bolt Tensile Area Type
    • Axu : User Defined Bolt Tensile Area
  • jointtype : Joint Or Material Type
  • csntype : SN Curve Type
  • walltype : Weld Joint Type
    • tru : User Defined Reference Thickness
  • kfactype : Thickness Exponent Type
    • ku : User Defined Thickness Exponent
  • scftype : Stress Concentration Factor Type
    • SCFu : User Defined Stress Concentration Factor
  • dfftype : Design Fatigue Factor Type
    • DFFu : User Defined Design Fatigue Factor
  • temptype : Temperature Derating Type
    • Tu : User Defined Design Temperature
  • systype : System Effect Factor Type
    • Rsu : User Defined System Effect Log Factor
  • Nd : Bolt Design Load Amplitude

Tool Output

  • Ax : Bolt Tensile Area
  • D : Bolt Diameter
  • DFF : Design Fatigue Factor
  • N : Allowable Number Of Cycles
  • P : Bolt Thread Pitch
  • Rm : Material Thickness Derating Log Factor
  • Rs : System Effect Log Factor
  • Rt : Temperature Derating Log Factor
  • SCF : Stress Concentration Factor
  • Sd : Bolt Design Stress Amplitude
  • Sn : Bolt Nominal Stress Amplitude
  • TPI : Bolt Threads Per Inch
  • k : Thickness Exponent
  • tref : Reference Thickness

CALCULATOR : DNVGL RP C203 Bolt Shear Stress Amplitude And Allowable Cycles [PLUS]   ±

Calculate DNVGL RP C203 bolt shear stress amplitude and allowable cycles from shear load amplitude.

The shear load is assumed to act on the shank of the bolt, and not on the thread area. The calculation is not valid for reversing shear loads.

Tool Input

  • bolttype : Bolt Schedule
  • diabtype : Bolt Size
    • Du : User Defined Bolt Diameter
  • walltype : Weld Joint Type
    • tru : User Defined Reference Thickness
  • kfactype : Thickness Exponent Type
    • ku : User Defined Thickness Exponent
  • scftype : Stress Concentration Factor Type
    • SCFu : User Defined Stress Concentration Factor
  • dfftype : Design Fatigue Factor Type
    • DFFu : User Defined Design Fatigue Factor
  • temptype : Temperature Derating Type
    • Tu : User Defined Design Temperature
  • systype : System Effect Factor Type
    • Rsu : User Defined System Effect Log Factor
  • Nd : Bolt Design Load Amplitude

Tool Output

  • Ax : Bolt Tensile Area
  • D : Bolt Diameter
  • DFF : Design Fatigue Factor
  • N : Allowable Number Of Cycles
  • Rm : Material Thickness Derating Log Factor
  • Rs : System Effect Log Factor
  • Rt : Temperature Derating Log Factor
  • SCF : Stress Concentration Factor
  • Sd : Bolt Design Stress Amplitude
  • Sn : Bolt Nominal Stress Amplitude
  • k : Thickness Exponent
  • tref : Reference Thickness

CALCULATOR : DNVGL RP C203 Pipeline Expansion Spool Stress Amplitude And Allowable Cycles [PLUS]   ±

Calculate DNVGL RP C203 pipeline expansion spool fatigue check from spool length and expansion length.

The design load and design moment are calculated from simple beam theory. The expansion spool is modelled as a beam with fixed ends, with a lateral displacement at one end, and a uniform distributed load equal to the lateral friction force. The lateral friction force can not be fully mobilised for spools longer than the maximum friction length. The maximum stress amplitude is assumed to occur on the offset side of the bend. The design fatigue factors for pipelines are defined by safety class in DNVGL-ST-F101 (DFF = 2 Low, DFF = 6 medium, and DFF = 10 high).

Reference : DNVGL-ST-F101 : Submarine Pipeline Systems (Download from the DNVGL website)

Tool Input

  • schdtype : Pipe Schedule Type
  • diamtype : Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • modptype : Pipe Property Type
    • Eu : User Defined Pipe Elastic Modulus
    • ρpu : User Defined Pipe Density
  • sectype : Pipe Section Properties Type
    • Asu : User Defined Steel Cross Section Area
    • Zu : User Defined Pipe Z Modulus
    • EIu : User Defined Pipe EI Modulus
  • wltype : Pipe Weight Type
    • Wlu : User Defined Pipe Unit Weight
  • frictype : Pipe Soil Friction Type
    • μu : User Defined Lateral Friction Factor
    • Fu : User Defined Lateral Friction Unit Force
  • optype : Characteristic Wall Thickness Type
  • jointtype : Joint Or Material Type
  • csntype : SN Curve Type
  • walltype : Weld Joint Type
    • tru : User Defined Reference Thickness
  • kfactype : Thickness Exponent Type
    • ku : User Defined Thickness Exponent
  • scftype : Stress Concentration Factor Type
    • SCFu : User Defined Stress Concentration Factor
  • dfftype : Design Fatigue Factor Type
    • DFFu : User Defined Design Fatigue Factor
  • ratype : Forging Surface Roughness Type
  • temptype : Temperature Derating Type
    • Td : User Defined Design Maximum Temperature
  • systype : System Effect Factor Type
    • Rsu : User Defined System Effect Log Factor
  • Pd : Internal Pressure
  • ta : Corrosion Allowance
  • Δ : Expansion Length
  • Lo : Spool Length
  • ρf : Operating Fluid Density
  • ρe : External Fluid Density

Tool Output

  • ΔM : Delta Bending Moment Operating And Shutdown
  • ΔN : Delta Axial Load Operating And Shutdown
  • ΔP : Delta Pressure Operating And Shutdown
  • ρp : Pipe Density
  • As : Steel Cross Section Area
  • DFF : Design Fatigue Factor
  • E : Pipe Elastic Modulus
  • EI : Pipe E x I
  • F : Pipe Unit Lateral Friction Force
  • Lmax : Maximum Spool Length For Lateral Friction Mobilisation
  • N : Allowable Number Of Cycles
  • OD : Pipe Nominal Outside Diameter
  • Rm : Material Thickness Derating Log Factor
  • Rs : System Effect Log Factor
  • Rt : Temperature Derating Log Factor
  • SCF : Stress Concentration Factor
  • Sd : Design Stress Amplitude (With SCF)
  • Sm : Mean Stress Amplitude (No SCF)
  • W : Pipe Unit Weight
  • Z : Pipe Z Modulus
  • k : Thickness Exponent
  • t2 : Wall Thickness t2
  • tn : Pipe Nominal Wall Thickness
  • tref : Reference Thickness