Pipeng Toolbox : Stokes Wave Calculators Blank User
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Demo

Stokes Fifth Order Wave

Calculate Stokes wave velocity, acceleration and surface profile using Skjelbria and Hendrickson's fifth order wave method.

Stokes wave model is suitable for waves with short wavelength or small amplitude. The calculators include the correction to the sign of the c 8 term in the C2 coefficient (changed from + to -2592 c 8 ). Check that the convergence is close to or equal to one. The wave period should be measured at zero current velocity to avoid Doppler effects.

Note : The Stokes wave theory uses a truncated infinite series. The truncated series is only valid for certain conditions. For shallow water waves the cnoidal wave is recommended. The recommended wave type is displayed below the calc bar.

Reference : Lars Skjelbria and James Hendrickson, Fifth Order Gravity Wave Theory

    Related Modules :

    [FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
    [PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
    Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

    Links : ±
    CALCULATOR : Stokes Wave Velocity And Acceleration Using Skjelbria's Method [FREE]   ±

    Calculate Stokes wave velocity and acceleration.

    The wave can be defined by the wave height and water depth, and either the wave length, or the wave period. The wave velocity and acceleration can be calculated at either the wave surface (varies with phase angle), the wave trough height, the seabed, or at a user defined height above the seabed.

    Use the Result Plot option to plot wave velocity and acceleration versus phase angle.

    Tool Input

    • lttype : Wave Parameter Type
      • Tu : User Defined Wave Period
      • Lu : User Defined Wave Length
    • ztype : Height Above Seabed Type
      • zhu : User Defined Height
    • d : Water Depth
    • H : Wave Height
    • Θ : Wave Phase Angle

    Tool Output

    • η : Wave Surface Relative To Mean Sea Level
    • λ : Stokes Lamda Coefficient
    • Ah : Wave Horizontal Acceleration
    • Am : Wave Acceleration Magnitude
    • Av : Wave Vertical Acceleration
    • L : Wave Length
    • Lo : Deep Water Wave Length
    • T : Wave Period
    • Vh : Wave Horizontal Velocity
    • Vm : Wave Velocity Magnitude
    • Vv : Wave Vertical Velocity
    • c : Wave Celerity
    • cvg : Convergence Check
    • zh : Height Above Seabed
    • zs : Wave Surface Height Above Seabed
    • zw : Wave Trough Height Above Seabed

    CALCULATOR : Airy Stokes And Cnoidal Wave Selection [FREE]   ±

    Select the most suitable wave theory (Airy, Stokes or cnoidal) from the dimensionless wave height, water depth and wave length (combined ISO method and Fenton method).

    Use the Result Plot option to plot either dimensionless wave height versus water depth (ISO method), or dimensionless wave height versus wave length (Fenton method). The observed breaking wave height is lower than theoretical wave height.

    Tool Input

    • wavetype : Wave Type
    • lttype : Wave Parameter Type
      • Tu : User Defined Wave Period
      • Lu : User Defined Wave Length
    • d : Water Depth
    • H : Wave Height

    Tool Output

    • H* : Dimensionless Wave Height Number
    • L : Wave Length
    • T : Wave Period
    • Ur : Dimensionless Ursell Number
    • c : Wave Celerity
    • cvg : Convergence Check
    • d* : Dimensionless Water Depth Number
    • f : Wave Frequency
    • hod : Wave Height Over Water Depth Ratio
    • k : Wave Number
    • lod : Wave Length Over Water Depth Ratio
    • w : Wave Trough Height Above Seabed

    CALCULATOR : Airy Stokes And Cnoidal Wave Velocity And Acceleration [FREE]   ±

    Calculate Stokes wave velocity and acceleration.

    The wave parameters can be defined by the wave height and water depth, and either the wave length, or the wave period. The wave velocity and acceleration can be calculated at either the wave surface (varies with phase angle), the wave trough height, the seabed, or at a user defined height above the seabed. Wave phase angle can be defined from angle Θ, displacement x or ± time t (Θ = 360 (x - c t) / L).

    Use the Result Plot option to plot either wave velocity and acceleration versus phase angle, wave profile versus wave type, or wave acceleration or velocity versus wave type.

    Tool Input

    • wavetype : Wave Type
    • lttype : Wave Parameter Type
      • Tu : User Defined Wave Period
      • Lu : User Defined Wave Length
    • phasetype : Phase Angle Type
      • Θu : User Defined Phase Angle
      • xu : User Defined Displacement
      • tu : User Defined Time
    • ztype : Height Above Seabed Type
      • zhu : User Defined Height
    • d : Water Depth
    • H : Wave Height

    Tool Output

    • Θ : Wave Phase Angle
    • η : Wave Surface Relative To Mean Sea Level
    • Ah : Wave Horizontal Acceleration
    • Am : Wave Acceleration Magnitude
    • Av : Wave Vertical Acceleration
    • L : Wave Length
    • T : Wave Period
    • Vh : Wave Horizontal Velocity
    • Vm : Wave Velocity Magnitude
    • Vv : Wave Vertical Velocity
    • c : Wave Celerity
    • cvg : Convergence Check
    • zh : Height Above Seabed
    • zs : Wave Surface Height Above Seabed
    • zw : Wave Trough Height Above Seabed

    CALCULATOR : Airy Stokes And Cnoidal Wave Velocity And Acceleration From Return Period Data [PLUS]   ±

    Calculate Stokes wave velocity and acceleration from return period data.

    Wave height and period can be calculated using linear regression on either a Weibull, Gumbel, or Frechet distribution. The three parameter option can be used with the Weibull and Frechet distributions to account for the minimum amplitude. Enter data points as sets of three data points separated by a comma or tab (R, H, T), with each set on a new line. Data can also be copied and pasted from a spreadsheet.

    A relative heading of zero degrees is parallel to the structure, or ninety degrees is perpendicular to the structure. Wave phase angle can be defined from angle Θ, displacement x or ± time t (Θ = 360 (x - c t) / L).

    Use the Result Plot option to plot either wave velocity and acceleration versus phase angle, wave profile versus wave type, or wave acceleration or velocity versus wave type.

    Tool Input

    • sptype : Wave Sample Period
      • Su : User Defined Wave Sample Period
    • offtype : Probability Function Parameter Type
      • Hou : User Defined Minimum Wave Height
      • Tou : User Defined Minimum Wave Period
    • rtype : Linear Regression Type
    • wavetype : Wave Type
    • phasetype : Phase Angle Type
      • Θu : User Defined Phase Angle
      • x : User Defined Displacement
      • t : User Defined Time
    • ztype : Design Elevation Above Seabed Type
      • Zu : User Defined Elevation
    • Rdata : Return Period Data
    • Hdata : Wave Height Data
    • Tdata : Wave Period Data
    • R : Design Return Period
    • d : Water Depth

    Tool Output

    • Θ : Wave Phase Angle
    • η : Wave Surface Relative To Mean Sea Level
    • Ah : Wave Horizontal Acceleration
    • Am : Wave Acceleration Magnitude
    • Av : Wave Vertical Acceleration
    • Ho : Minimum Wave Height
    • Hsm : Mean Wave Height
    • Hw : Wave Height
    • L : Wave Length
    • S : Sample Period
    • To : Minimum Wave Period
    • Tpm : Mean Wave Period
    • Tw : Wave Period
    • Vh : Wave Horizontal Velocity
    • Vm : Wave Velocity Magnitude
    • Vv : Wave Vertical Velocity
    • Z : Design Elevation Above Seabed
    • Zs : Wave Surface Height Above Seabed
    • Zw : Wave Trough Height Above Seabed
    • c : Wave Celerity
    • cvg : Convergence Factor

    CALCULATOR : Stokes Wave Spreading And Velocity Reduction Factor [FREE]   ±

    Calculate Stokes wave velocity reduction factor from relative heading and spreading factor.

    The spreading factor accounts for wave 'choppiness', the tendency for intersecting waves from multiple directions. Smaller spreading factor indicates more choppiness. A relative heading of zero degrees is parallel to the pipeline or structure, or ninety degrees is perpendicular to the pipeline or structure.

    Use the Result Plot option to plot reduction factor versus relative heading and spreading factor.

    Tool Input

    • sfactype : Shape Factor Type
      • su : User Defined Spreading Factor
    • rdtype : Velocity Reduction Factor Type
    • Φ : Relative Wave Heading

    Tool Output

    • Rdw : Wave Velocity Reduction Factor
    • kw : Wave Shape kw Factor
    • sf : Wave Shape Factor