Pipeng Toolbox : Morison's Equation Calculators Login
Short Cuts
GO
Main ±
Beams ±
References ±
Fluid Flow ±
Fluid Properties ±
Maths ±
Materials ±
Pipelines ±
Soils ±
Subsea ±
Data ±
Units ±
Help ±
Demo

Morison's Equation Wave And Current Load

Calculate wave and current loads on submerged structures using Morison's equation (Airy Stokes and Cnoidal waves).

For vertical structures the load forces are due to the horizontal velocity and acceleration only. For horizontal structures the load forces also include vertical velocity and acceleration. Lateral (lift) forces are due to non symmetric flow around the structure, either because of proximity to the seabed or another structure, or by non symmetric cross section. The Keulegan Carpenter number is a measure of the ratio of wave inertial forces and drag forces.

Change Module :

[FREE] tools are free in basic mode with no login (no plots, tables, goal seek etc). Login or Open a free account to use the tools in plus mode (with plots, tables, goal seek etc).
[PLUS] tools are free in basic CHECK mode with Login or Open a free account (CHECK values no plots, tables, goal seek etc). Buy a Subscription to use the tools in plus mode (with plots, tables, goal seek etc).
Try plus mode using the Plus Mode Demo tools with no login.   Help Using The Pipeng Toolbox (opens in the popup workbook)

Links : ±
CALCULATOR : Morison's Equation Vertical Cylinder Wave And Current Loads Airy Stokes And Cnoidal Wave [PLUS]   ±

Calculate Morison's equation wave and current loads on vertical cylinders for Airy, Stokes and cnoidal waves.

Wave loads can either be calculated from phase angle, or calculated for the maximum load magnitude. Loads are force per length (unit loads). The maximum load is assumed to occur between 0 and 90 degrees phase angle. The phase angle for maximum load is calculated to the nearest degree. The current is assumed to be parallel to the waves. Wave spreading is ignored. The Keulegan Carpenter number is calculated at maximum horizontal velocity (wave phase angle = 0).

Use the Result Plot option to display either the wave profiles versus phase angle, wave velocity and acceleration versus phase angle, or wave loads versus phase angle.

Tool Input

  • uctype : Current Velocity Type
  • roughtype : Seabed Roughness Type
    • zou : User Defined Seabed Roughness
  • lttype : Wave Parameter Type
    • Tu : User Defined Wave Period
    • Lu : User Defined Wave Length
  • wavetype : Wave Type
  • phasetype : Wave Phase Angle Type
    • Θu : User Defined Phase Angle
  • ztype : Height Above Seabed Type
    • zhu : User Defined Height
  • C : Load Coefficients
  • OOD : Outer Diameter Including Layers
  • d : Water Depth
  • H : Wave Height
  • Vr : Reference Velocity
  • zr : Reference Height Above Seabed
  • ρ : Fluid Density

Tool Output

  • Θ : Wave Phase Angle
  • Φ : Force Heading Relative To Wave Direction
  • η : Wave Profile Height Relative To Sea Level
  • Ah : Wave Horizontal Acceleration
  • Fd : Drag Force
  • Fl : Lateral or Lift Force
  • Fm : Inertia Force
  • Ft : Total Force
  • Fx : Inline Force
  • Kc : Keulegan Carpenter Number
  • L : Wave Length
  • T : Wave Period
  • Vc : Current Velocity
  • Vh : Wave Horizontal Velocity
  • Vt : Total Horizontal Velocity
  • c : Wave Celerity
  • cvg : Convergence Check
  • w : Wave Trough Height Above Seabed
  • zh : Height Above Seabed
  • zo : Seabed Roughness

CALCULATOR : Morison's Equation Horizontal Cylinder Wave And Current Loads Airy Stokes And Cnoidal Wave [PLUS]   ±

Calculate Morison's equation wave and current loads on horizontal cylinders for Airy, Stokes and cnoidal waves.

Wave loads can either be calculated from phase angle, or calculated for the maximum load magnitude. Loads are force per length (unit loads). Wave spreading accounts for wave "choppiness". The maximum load is assumed to occur between 0 and 90 degrees phase angle. The phase angle for maximum load is calculated to the nearest degree. The Keulegan Carpenter number is calculated at maximum horizontal velocity (wave phase angle = 0). Wave and current loads are calculated at the center of the pipe.

Wave and current heading is measured relative to the structure. A relative heading of zero degrees is parallel to the structure, or ninety degrees is perpendicular to the structure. The current is assumed to be parallel to the waves.

Use the Result Plot option to display either the wave profiles versus phase angle, wave velocity versus phase angle, or wave loads versus phase angle.

Tool Input

  • hwtype : Wave And Current Heading Type
    • Φwu : User Defined Wave And Current Heading
  • sfactype : Shape Type
    • su : User Defined Spreading Factor
  • rdtype : Reduction Factor Type
    • Rwu : User Defined Wave Reduction Factor
    • Rcu : User Defined Current Reduction Factor
  • uctype : Current Velocity Type
  • roughtype : Seabed Roughness Type
    • zou : User Defined Seabed Roughness
  • lttype : Wave Parameter Type
    • Tu : User Defined Wave Period
    • Lu : User Defined Wave Length
  • wavetype : Wave Type
  • phasetype : Wave Phase Angle Type
    • Θu : User Defined Phase Angle
  • ztype : Height Above Seabed Type
    • zhu : User Defined Height
  • C : Load Coefficients
  • Φs : Structure Absolute heading
  • OOD : Outer Diameter Including Layers
  • d : Water Depth
  • H : Wave Height
  • Vr : Reference Velocity
  • zr : Reference Height Above Seabed
  • ρ : Fluid Density

Tool Output

  • Θ : Wave Phase Angle
  • Φ : Force Heading Relative To Horizontal
  • Φw : Wave Relative heading
  • η : Wave Profile Height Relative To Sea Level
  • Ah : Wave Horizontal Acceleration
  • Av : Wave Vertical Acceleration
  • Fdx : Horizontal Drag Load
  • Fdz : Vertical Drag Load
  • Fl : Vertical Lift Load
  • Fmx : Horizontal Inertia Load
  • Fmz : Vertical Inertia Load
  • Ft : Total Force
  • Fx : Horizontal Force
  • Fz : Vertical Load
  • Kc : Keulegan Carpenter Number
  • L : Wave Length
  • Rc : Current Velocity Reduction Factor
  • Rw : Wave Velocity Reduction Factor
  • T : Wave Period
  • Vc : Current Velocity
  • Vh : Wave Horizontal Velocity
  • Vv : Wave Vertical Velocity
  • Vx : Horizontal Velocity
  • c : Wave Celerity
  • cvg : Convergence Check
  • sf : Wave Spreading Factor
  • w : Wave Trough Height Above Seabed
  • zh : Center Of Pipe Height Above Seabed
  • zo : Seabed Roughness
  • zs : Surface Elevation

CALCULATOR : Morison's Equation General Cylinder Wave And Current Loads From Horizontal Wave Velocity And Acceleration [FREE]   ±

Calculate Morison's equation loads on cylinders from horizontal fluid velocity and acceleration.

Fluid loads are calculated from the horizontal wave velocity and acceleration assuming a first order sinusoidal variation with phase angle (as for the Airy wave). The vertical velocity and acceleration are ignored. Wave loads can either be calculated from phase angle, or calculated for the maximum load magnitude. Loads are force per length (unit loads). The maximum load is assumed to occur between 0 and 90 degrees phase angle. The phase angle for maximum load is calculated to the nearest degree. The Keulegan Carpenter number is calculated from the maximum horizontal velocity.

Use the Result Plot option to plot either the wave velocity and acceleration versus phase angle, or wave loads versus phase angle.

Tool Input

  • phasetype : Wave Phase Type
    • Θu : User Defined Phase Angle
  • C : Load Coefficients
  • OOD : Outer Diameter Including Layers
  • Vc : Current Velocity
  • Vo : Maximum Horizontal Velocity
  • Ao : Maximum Horizontal Acceleration
  • T : Wave Period
  • ρ : Fluid Density

Tool Output

  • Θ : Wave Phase Angle
  • Φ : Force Heading Relative To Horizontal
  • Ah : Horizontal Acceleration From Phase Angle
  • Fd : Drag Load
  • Fl : Lateral Load
  • Fm : Inertia Load
  • Ft : Load Magnitude
  • Fx : Horizontal Load (Drag Load + Inertia Load)
  • Kc : Keulegan Carpenter Number
  • Vh : Horizontal Velocity From Phase Angle
  • Vt : Total Horizontal Velocity (Wave and Current)

CALCULATOR : Morison's Equation Pipe Submerged Weight (Multi Layer Pipe) [FREE]   ±

Calculate Morison's equation multi layer pipeline submerged weight and outer diameter.

Details for each layer are displayed in the ooutput at the bottom of the page.

Tool Input

  • schdtype : Line Pipe Schedule Type
  • diamtype : Line Pipe Diameter Type
    • ODu : User Defined Outside Diameter
    • IDu : User Defined Inside Diameter
  • wtntype : Line Pipe Wall Thickness Type
    • tnu : User Defined Wall Thickness
  • wltype : Pipe Weight Type
    • OODu : User Defined Outer Diameter Including External Coating
    • wu : User Defined Submerged Weight
    • SGu : User Defined Specific Gravity
  • WTi : Pipe Liner Wall Thickness
  • ρi : Pipe And Liner Density
  • WTo : Pipe Coating Wall Thickness
  • ρo : Pipe Coating Density
  • ρf : Contents Fluid Density
  • ρb : Displaced Fluid Density

Tool Output

  • OOD : Pipe Outer Diameter Including Coatings
  • SG : Pipe Specific Gravity Relative To Displaced Fluid
  • Ws : Pipe Total Weight Per Length Including Contents and Buoyancy

CALCULATOR : Morison's Equation Keulegan Carpenter Number Airy Stokes And Cnoidal Wave [FREE]   ±

Calculate Morison's equation Keulegan Carpenter number and Reynolds number for vertical or horizontal tubulars (Airy Stokes and Cnoidal waves).

The Keulegan Carpenter number and Reynolds number are calculated from the wave horizontal velocity at zero degrees phase angle. For vertical tubulars the wave reduction should be set to 1 (no wave spreading). Wave spreading accounts for multi directional waves.

Tool Input

  • wavetype : Wave Type
  • lttype : Wave Parameter Type
    • Tu : User Defined Wave Period
    • Lu : User Defined Wave Length
  • ztype : Height Above Seabed Type
    • zhu : User Defined Height
  • d : Water Depth
  • H : Wave Height
  • OOD : Pipeline Outer Diameter

Tool Output

  • Kc : Keulegan Carpenter Number
  • L : Wave Length
  • T : Wave Period
  • c : Wave Celerity
  • cvg : Convergence Check
  • w : Wave Trough Height Above Seabed

CALCULATOR : Morison's Equation Sea Water Density From Temperature And Practical Salinity [FREE]   ±

Calculate Morison's equation seawater density at atmospheric pressure from temperature, and practical salinity.

Seawater density is calculated using the TEOS-10 seawater equations. Practical salinity = parts per thousand of dissolved solids (mainly salt). The absolute salinity is taken as 35.16504 / 35 times the practical salinity. The absolute salinity anomaly δSA is ignored.

Use the Result Plot option to plot density versus temperature.

Tool Input

  • T : Seawater Temperature

Tool Output

  • ρ : Seawater Density

CALCULATOR : Morison's Equation Fresh Water Density From Temperature [FREE]   ±

Calculate fresh water density versus temperature at atmospheric pressure (IAPWS R7-97 steam table).

Use the Result Plot option to plot density versus temperature.

Tool Input

  • T : Temperature

Tool Output

  • ρ : Density